
LARGE-SCALE CONVEX OPTIMIZATION: PARALLELIZATION AND VARIANCE REDUCTION

Ph.D. Thesis Defense

June 10th, 2024

Cheik Traoré1

Supervisor: Silvia Villa1

Jury: Claudio Estatico1, François Glineur2 and Juan Peypouquet3

1University of Genoa, 2UCLouvain, 3University of Groningen

Context

Training dataset:
(
ui, yi

)
i∈{1,2,··· ,n}.

minimize
x∈Rm

1

n

n∑
i=1

ℓ(f(ui;x), yi) + λR(x).

2

Context

Training dataset:
(
ui, yi

)
i∈{1,2,··· ,n}.

minimize
x∈Rm

1

n

n∑
i=1

ℓ(f(ui;x), yi) + λR(x).

ui
1

ui
2

h11

h12

h13

h21

h22

h23

h31

h32

h33

f(ui,x)

x1

x2

x
3

x4

x5

x6

x7

x
8

x
9

x10

x11

x
12

x 13

x14

x15

x16
x
17

x
18

x19

x20

x
21

x 22

x23

x24

x
25

x26

x27

2

Context

Training dataset:
(
ui, yi

)
i∈{1,2,··· ,n}.

minimize
x∈Rm

1

n

n∑
i=1

ℓ(f(ui;x), yi) + λR(x).

ui
1

ui
2

h11

h12

h13

h21

h22

h23

h31

h32

h33

f(ui,x)

x1

x2

x
3

x4

x5

x6

x7

x
8

x
9

x10

x11

x
12

x 13

x14

x15

x16
x
17

x
18

x19

x20

x
21

x 22

x23

x24

x
25

x26

x27

n and m can be very big: several BILLIONS!!!

2

Context

Training dataset:
(
ui, yi

)
i∈{1,2,··· ,n}.

minimize
x∈Rm

1

n

n∑
i=1

ℓ(f(ui;x), yi) + λR(x).

ui
1

ui
2

h11

h12

h13

h21

h22

h23

h31

h32

h33

f(ui,x)

x1

x2

x
3

x4

x5

x6

x7

x
8

x
9

x10

x11

x
12

x 13

x14

x15

x16
x
17

x
18

x19

x20

x
21

x 22

x23

x24

x
25

x26

x27

n and m can be very big: several BILLIONS!!!

ChatGP4: estimated 1.76 trillion parameters (Georges Hotz).

2

Outline

General introduction

Asynchronous Forward-Backward

Variance reduction techniques for SPPA

Conclusion

3

Optimization for data science

Goal:
minimize

x∈H
F (x) = f(x) + g(x),

where H is a separable real Hilbert space and F, f, g : H → R.

Example:

minimize
x∈Rm

F (x) =
1

n

n∑
i=1

fi(x)︸ ︷︷ ︸
f(x)

+λR(x)︸ ︷︷ ︸
g(x)

,

4

Optimization for data science

Goal:
minimize

x∈H
F (x) = f(x) + g(x),

where H is a separable real Hilbert space and F, f, g : H → R.

Example:

minimize
x∈Rm

F (x) =
1

n

n∑
i=1

fi(x)︸ ︷︷ ︸
f(x)

+λR(x)︸ ︷︷ ︸
g(x)

,

4

Most popular method

Gradient descent (GD):
x0 ∈ H

xk+1 = xk − γk∇F (xk).

5

Most popular method

Gradient descent (GD):
x0 ∈ H

xk+1 = xk − γk∇F (xk).

5

GD rates

F is µ−strongly convex for µ ≥ 0

:

(∀x,y ∈ H) (t ∈ [0, 1]) F (tx+ (1− t)y) ≤ tF (x) + (1− t)F (y)− µ

2
t(1− t)∥x− y∥2.

F is L−smooth for L ≥ 0:

(∀x,y ∈ H) ∥∇F (x)−∇F (y)∥ ≤ L∥x− y∥

6

GD rates

F is µ−strongly convex for µ ≥ 0:

(∀x,y ∈ H) (t ∈ [0, 1]) F (tx+ (1− t)y) ≤ tF (x) + (1− t)F (y)− µ

2
t(1− t)∥x− y∥2.

F is L−smooth for L ≥ 0:

(∀x,y ∈ H) ∥∇F (x)−∇F (y)∥ ≤ L∥x− y∥

6

GD rates

F is µ−strongly convex for µ ≥ 0:

(∀x,y ∈ H) (t ∈ [0, 1]) F (tx+ (1− t)y) ≤ tF (x) + (1− t)F (y)− µ

2
t(1− t)∥x− y∥2.

F is L−smooth for L ≥ 0:

(∀x,y ∈ H) ∥∇F (x)−∇F (y)∥ ≤ L∥x− y∥

6

GD rates

Let γk = 1
L .

▶ If µ = 0,
F (xk)− F∗ ≤ O(1/k) (sublinear rate).

▶ If µ > 0,
F (xk)− F∗ ≤ O(εk) (linear rate),

with ϵ < 1.

7

GD rates

Let γk = 1
L .

▶ If µ = 0,
F (xk)− F∗ ≤ O(1/k) (sublinear rate).

▶ If µ > 0,
F (xk)− F∗ ≤ O(εk) (linear rate),

with ϵ < 1.

7

GD rates

Let γk = 1
L .

▶ If µ = 0,
F (xk)− F∗ ≤ O(1/k) (sublinear rate).

▶ If µ > 0,
F (xk)− F∗ ≤ O(εk) (linear rate),

with ϵ < 1.

7

Sum of functions problem

First case: g ≡ 0 and f(x) = 1
n

∑n
i=1 fi(x).

The problem is now:

minimize
x∈H

F (x) =
1

n

n∑
i=1

fi(x).

8

Sum of functions problem

First case: g ≡ 0 and f(x) = 1
n

∑n
i=1 fi(x).

The problem is now:

minimize
x∈H

F (x) =
1

n

n∑
i=1

fi(x).

8

Stochastic gradient descent (SGD)

SGD update is:

Select uniformly at random ik ∈ [n] := {1, 2, . . . , n} and do

xk+1 = xk − γk∇fik(x
k).

9

Non-smooth problem

Second case: g is not differentiable.

The problem is:
minimize

x∈H
F (x) = f(x) + g(x),

with f smooth.

So F is non-smooth!!

10

Non-smooth problem

Second case: g is not differentiable.

The problem is:
minimize

x∈H
F (x) = f(x) + g(x),

with f smooth.

So F is non-smooth!!

10

Non-smooth problem

Second case: g is not differentiable.

The problem is:
minimize

x∈H
F (x) = f(x) + g(x),

with f smooth.

So F is non-smooth!!

10

Subgradient descent

Update:

xk+1 = xk − γk∂F (xk).

Rates with γk → 0 and bounded subgradient:

▶ Convex case: F (x̄k)− F∗ ≤ O
(

1√
k

)
.

▶ Strongly convex case: F (x̄k)− F∗ ≤ O (1/k).

x̄k =
∑k

t=i ptx
t with

∑k
t=i pt = 1 .

11

Subgradient descent

Update:

xk+1 = xk − γk∂F (xk).

Rates with γk → 0 and bounded subgradient:

▶ Convex case: F (x̄k)− F∗ ≤ O
(

1√
k

)
.

▶ Strongly convex case: F (x̄k)− F∗ ≤ O (1/k).

x̄k =
∑k

t=i ptx
t with

∑k
t=i pt = 1 (ergodic rates).

11

Proximal Point Algorithm (PPA)

Update:

xk+1 = proxγkF
(xk) = proxγk(f+g)(x

k)

= argmin
x

F (x) +
1

2γk
∥x− xk∥2

= argmin
x

f(x) + g(x) +
1

2γk
∥x− xk∥2.

Rates with γk = γ ∈ R+:

▶ Convex case: F (xk)− F∗ ≤ O(1/k).

▶ Strongly convex case: F (xk)− F∗ ≤ O(εk), with ϵ < 1.

12

Proximal Point Algorithm (PPA)

Update:

xk+1 = proxγkF
(xk) = proxγk(f+g)(x

k)

= argmin
x

F (x) +
1

2γk
∥x− xk∥2

= argmin
x

f(x) + g(x) +
1

2γk
∥x− xk∥2.

Rates with γk = γ ∈ R+:

▶ Convex case: F (xk)− F∗ ≤ O(1/k).

▶ Strongly convex case: F (xk)− F∗ ≤ O(εk), with ϵ < 1.

12

Forward-Backward

Proximal gradient (Forward-Backward) update:

xk+1 = proxγkg

(
xk − γk∇f(xk)

)
.

Rates with γk = 1
L :

▶ Convex case: F (xk)− F∗ ≤ O(1/k).

▶ Strongly convex case: F (xk)− F∗ ≤ O(εk), with ϵ < 1.

13

Forward-Backward

Proximal gradient (Forward-Backward) update:

xk+1 = proxγkg

(
xk − γk∇f(xk)

)
.

Rates with γk = 1
L :

▶ Convex case: F (xk)− F∗ ≤ O(1/k).

▶ Strongly convex case: F (xk)− F∗ ≤ O(εk), with ϵ < 1.

13

Parallel Forward-Backward

Suppose that H =
⊕m

i=1 Hi, that we have a central server S and m machines:
M1,M2, · · · ,Mm.

▶ For i ∈ {1, 2, · · · ,m}, machine Mi computes ∇if(x
k).

▶ The server S reconstitutes ∇f(xk),

▶ and makes the update:

xk+1 = proxγkg

(
xk − γk∇f(xk)

)
.

14

Parallel Forward-Backward

Suppose that H =
⊕m

i=1 Hi, that we have a central server S and m machines:
M1,M2, · · · ,Mm.

▶ For i ∈ {1, 2, · · · ,m}, machine Mi computes ∇if(x
k).

▶ The server S reconstitutes ∇f(xk),

▶ and makes the update:

xk+1 = proxγkg

(
xk − γk∇f(xk)

)
.

14

Parallel Forward-Backward

Suppose that H =
⊕m

i=1 Hi, that we have a central server S and m machines:
M1,M2, · · · ,Mm.

▶ For i ∈ {1, 2, · · · ,m}, machine Mi computes ∇if(x
k).

▶ The server S reconstitutes ∇f(xk),

▶ and makes the update:

xk+1 = proxγkg

(
xk − γk∇f(xk)

)
.

14

Parallel Forward-Backward

Suppose that H =
⊕m

i=1 Hi, that we have a central server S and m machines:
M1,M2, · · · ,Mm.

▶ For i ∈ {1, 2, · · · ,m}, machine Mi computes ∇if(x
k).

▶ The server S reconstitutes ∇f(xk),

▶ and makes the update:

xk+1 = proxγkg

(
xk − γk∇f(xk)

)
.

14

Synchronous Parallel Forward-Backward

Suppose that H =
⊕m

i=1 Hi, that we have a central server S and m machines:
M1,M2, · · · ,Mm.

▶ For i ∈ {1, 2, · · · ,m}, machine Mi computes ∇if(x
k).

▶ The server S reconstitutes ∇f(xk),

▶ and makes the update:

xk+1 = proxγkg

(
xk − γk∇f(xk)

)
.

14

Synchronous Parallel Forward-Backward

Suppose that H =
⊕m

i=1 Hi, that we have a central server S and m machines:
M1,M2, · · · ,Mm.

▶ For i ∈ {1, 2, · · · ,m}, machine Mi computes ∇if(x
k).

▶ The server S reconstitutes ∇f(xk),

▶ and makes the update:

xk+1 = proxγkg

(
xk − γk∇f(xk)

)
.

Synchronous algorithms are as slow as the slowest machine.

14

Outline

General introduction

Asynchronous Forward-Backward

Variance reduction techniques for SPPA

Conclusion

15

Problem setting

Consider:

minimize
x∈H

F (x) = f(x) + g(x), g(x) =
m∑
i=1

gi(xi),

where H =
⊕m

i=1 Hi.

16

Coordinate Forward-Backward

Algorithm
Let (γi)1≤i≤m ∈ Rm

++ and x0 = (x0
1, . . . , x

0
m) ∈ H. Iterate

for k = 0, 1, . . .
choose ik uniformly at random in [m] := {1, 2, . . . ,m}

for i = 1, . . . ,m⌊
xk+1
i =

{
proxγigi

(
xk
i − γi∇if(x

k)
)

if i = ik

xk
i if i ̸= ik.

17

Asynchronous Forward-Backward

Server S and m machines: M1,M2, · · · ,Mm.

▶ For i ∈ {1, 2, · · · ,m}, machine Mi computes ∇if(x
k).

▶ The server S receives ∇ikf(x
k) from machine Mik ,

▶ and makes the update:

xk+1
ik

= proxγik
gik

(
xk
ik
− γik∇ikf(x

k)
)
.

18

Asynchronous Forward-Backward

Server S and m machines: M1,M2, · · · ,Mm.

▶ For i ∈ {1, 2, · · · ,m}, machine Mi computes ∇if(x
k).

▶ The server S receives ∇ikf(x
k) from machine Mik ,

▶ and makes the update:

xk+1
ik

= proxγik
gik

(
xk
ik
− γik∇ikf(x

k)
)
.

18

Asynchronous Forward-Backward

Server S and m machines: M1,M2, · · · ,Mm.

▶ For i ∈ {1, 2, · · · ,m}, machine Mi computes ∇if(x
k).

▶ The server S receives ∇ikf(x
k) from machine Mik ,

▶ and makes the update:

xk+1
ik

= proxγik
gik

(
xk
ik
− γik∇ikf(x

k)
)
.

18

Asynchronous Forward-Backward

Server S and m machines: M1,M2, · · · ,Mm.

▶ For i ∈ {1, 2, · · · ,m}, machine Mi computes ∇if(x
k).

▶ The server S receives ∇ikf(x
k) from machine Mik ,

▶ and makes the update:

xk+1
ik

= proxγik
gik

(
xk
ik
− γik∇ikf(x

k)
)
.

18

Delayed gradient in asynchronous setting

𝑋! = (𝑥"
!, 𝑥#

!, 𝑥$
!)

M1 M2

𝑥!" 𝑥!"

𝑥!! = 𝑎𝑙𝑔𝑜 𝑥!", ∇!𝑓(𝑋")
𝑋! ← 𝑋"

𝑥!# = 𝑎𝑙𝑔𝑜 𝑥!$, ∇!𝑓(𝑋")
∇!𝑓 𝑋" = ∇!𝑓 𝑋$%$ ≠ ∇!𝑓 𝑋$

𝑋# ← 𝑋$

k=0

k=1

M3

𝑥$$ = 𝑎𝑙𝑔𝑜 𝑥$!, ∇$𝑓(𝑋")
∇$𝑓 𝑋" = ∇$𝑓 𝑋!%! ≠ ∇$𝑓 𝑋!

𝑋$ ← 𝑋!

k=2

𝑥$"

19

Asynchronous Forward-Backward

Algorithm
Let (γi)1≤i≤m ⊂ Rm

++ and x0 = (x0
1, . . . , x

0
m) ∈ H. Iterate

for k = 0, 1, . . .
choose ik uniformly at random in [m]

for i = 1, . . . ,m⌊
xk+1
i =

{
proxγigi

(
xk
i − γi∇if(x

k−dk)
)

if i = ik

xk
i if i ̸= ik,

where xk−dk = (xk−dk

1 , . . . , xk−dk

m).

20

Asynchronous Forward-Backward

Algorithm
Let (γi)1≤i≤m ⊂ Rm

++ and x0 = (x0
1, . . . , x

0
m) ∈ H. Iterate

for k = 0, 1, . . .
choose ik uniformly at random in [m]

for i = 1, . . . ,m⌊
xk+1
i =

{
proxγigi

(
xk
i − γi∇if(x

k−dk)
)

if i = ik

xk
i if i ̸= ik,

where xk−dk = (xk−dk

1 , . . . , xk−dk

m). dk ∈ N.

20

Read paradigm

▶ Consistent read

▶ Inconsistent read

21

Read paradigm

▶ Consistent read

▶ Inconsistent read

21

Inconsistent read

𝑥!" 𝑥#" 𝑥$"M1 reading

M2 updating

M2 updating

M1 reading

Shared data
representation

Data read by M1
(local)

M1 reading

k=0

k=2

k=4

k=4

M3 updating

M3 updating

𝑥!" 𝑥#" 𝑥$"

𝑥!! 𝑥#! 𝑥$!

𝑥!"

𝑥!"k=1

𝑥!"

𝑥!"

𝑥!" 𝑥!# 𝑥## 𝑥$#

𝑥!# 𝑥## 𝑥$#𝑥##

𝑥##k=3 𝑥!$ 𝑥#$ 𝑥$$
k=2

𝑥!% 𝑥#% 𝑥$%𝑥!" 𝑥##

𝑥!" 𝑥## 𝑥$% 𝑥!% 𝑥#% 𝑥$%

k=0

22

Inconsistent read

𝑥!" 𝑥#" 𝑥$"M1 reading

M2 updating

M2 updating

M1 reading

Shared data
representation

Data read by M1
(local)

M1 reading

k=0

k=2

k=4

k=4

M3 updating

M3 updating

𝑥!" 𝑥#" 𝑥$"

𝑥!! 𝑥#! 𝑥$!

𝑥!"

𝑥!"k=1

𝑥!"

𝑥!"

𝑥!" 𝑥!# 𝑥## 𝑥$#

𝑥!# 𝑥## 𝑥$#𝑥##

𝑥##k=3 𝑥!$ 𝑥#$ 𝑥$$
k=2

𝑥!% 𝑥#% 𝑥$%𝑥!" 𝑥##

𝑥!" 𝑥##= 𝑥#! 𝑥$% 𝑥!% 𝑥#% 𝑥$%

k=0

𝑥!"

𝑥!"

𝑥!"

𝑥!$

𝑥!"

𝑥#!

𝑥#!

𝑥!$ 𝑥#!

𝑥!$ 𝑥#! 𝑥$%

Actual Shared data
value

𝑥!" 𝑥#" 𝑥$"

𝑥#"

𝑥#!

𝑥#!

𝑥$"

𝑥$"

𝑥$#

𝑥$#

𝑥$#

𝑥$%

23

Algorithm studied2

Algorithm
Let (γi)1≤i≤m ⊂ Rm

++ and x0 = (x0
1, . . . , x

0
m) ∈ H. Iterate

for k = 0, 1, . . .
choose randomly ik in [m] with probability pik
for i = 1, . . . ,m⌊

xk+1
i =

{
proxγigi

(
xk
i − γi∇if(x

k−dk)
)

if i = ik

xk
i if i ̸= ik,

where xk−dk = (x
k−dk1
1 , . . . , x

k−dkm
m).

2Traoré, Salzo, et al., “Convergence of an asynchronous block-coordinate forward-backward algorithm for convex
composite optimization”.

24

Algorithm studied2

Algorithm
Let (γi)1≤i≤m ⊂ Rm

++ and x0 = (x0
1, . . . , x

0
m) ∈ H. Iterate

for k = 0, 1, . . .
choose randomly ik in [m] with probability pik
for i = 1, . . . ,m⌊

xk+1
i =

{
proxγigi

(
xk
i − γi∇if(x

k−dk)
)

if i = ik

xk
i if i ̸= ik,

where xk−dk = (x
k−dk1
1 , . . . , x

k−dkm
m). dk ∈ Nm.

2Traoré, Salzo, et al., “Convergence of an asynchronous block-coordinate forward-backward algorithm for convex
composite optimization”.

24

Algorithm studied2

Algorithm
Let (γi)1≤i≤m ⊂ Rm

++ and x0 = (x0
1, . . . , x

0
m) ∈ H. Iterate

for k = 0, 1, . . .
choose randomly ik in [m] with probability pik
for i = 1, . . . ,m⌊

xk+1
i =

{
proxγigi

(
xk
i − γi∇if(x

k−dk)
)

if i = ik

xk
i if i ̸= ik,

where xk−dk = (x
k−dk1
1 , . . . , x

k−dkm
m). dk ∈ Nm. pmax = maxi pi and pmin = mini pi > 0.

2Traoré, Salzo, et al., “Convergence of an asynchronous block-coordinate forward-backward algorithm for convex
composite optimization”.

24

Assumptions

▶ f : H → R is convex and differentiable.

▶ For every i ∈ {1, · · · ,m}, gi : Hi →]−∞,+∞] is proper convex and lower
semicontinuous.

▶ For all x ∈ H and i ∈ {1, · · · ,m}, the map ∇if(x1, . . . , xi−1, ·, xi+1, . . . , xm) : Hi → Hi is
Lipschitz continuous with constant Li. Define Lmax := maxi Li and Lmin := mini Li.

▶ For all x ∈ H and i ∈ {1, · · · ,m}, the map ∇f(x1, . . . , xi−1, ·, xi+1, . . . , xm) : Hi → H is
Lipschitz continuous with constant Lres > 0. Note that Lmax ≤ Lres.

▶ F attains its minimum F∗ := minF on H.

25

Assumptions

▶ We assume that the delays are deterministic and bounded by τ .

▶ The delay vector is independent of the coordinates.

26

Main result

Theorem (Convex case)
Assume that γi <

2

Li + 2τ pmax√
pmin

for all i ∈ [m].

Then,

▶ (xk)k∈N converges weakly P-a.s. to x∗ in argminF .

▶ And

(∀k ∈ N) E[F (xk)− F∗] ≤
1

k

(
dist2W(x0, argminF)

2
+ C

(
F (x0)− F∗

))
,

where C = O(τ) and W =

m⊕
i=1

1

γipi
Idi.

27

Main result

Theorem (Convex case)
Assume that γi <

2

Li + 2τ pmax√
pmin

for all i ∈ [m].Then,

▶ (xk)k∈N converges weakly P-a.s. to x∗ in argminF .

▶ And

(∀k ∈ N) E[F (xk)− F∗] ≤
1

k

(
dist2W(x0, argminF)

2
+ C

(
F (x0)− F∗

))
,

where C = O(τ) and W =

m⊕
i=1

1

γipi
Idi.

27

Main result

Theorem (Convex case)
Assume that γi <

2

Li + 2τ pmax√
pmin

for all i ∈ [m].Then,

▶ (xk)k∈N converges weakly P-a.s. to x∗ in argminF .

▶ And

(∀k ∈ N) E[F (xk)− F∗] ≤
1

k

(
dist2W(x0, argminF)

2
+ C

(
F (x0)− F∗

))
,

where C = O(τ) and W =

m⊕
i=1

1

γipi
Idi.

27

Linear convergence

Luo-Tseng error bound condition:

(∀x ∈ X) distΓ−1 (x, argminF) ≤ CX,Γ−1

∥∥x− proxΓ
−1

g

(
x−∇Γ−1

f(x)
)∥∥

Γ−1 ,

where Γ−1 =

m⊕
i=1

1

γi
Idi.

Equivalent to quadratic growth:

(∀x ∈ X)
func(CX,Γ−1)

2
dist2Γ−1 (x, argminF) ≤ F (xk)− F∗.

28

Linear convergence

Luo-Tseng error bound condition:

(∀x ∈ X) distΓ−1 (x, argminF) ≤ CX,Γ−1

∥∥x− proxΓ
−1

g

(
x−∇Γ−1

f(x)
)∥∥

Γ−1 ,

where Γ−1 =

m⊕
i=1

1

γi
Idi.

Equivalent to quadratic growth:

(∀x ∈ X)
func(CX,Γ−1)

2
dist2Γ−1 (x, argminF) ≤ F (xk)− F∗.

28

Linear convergence

Theorem (With error bound condition)
Suppose that γi <

2

Li + 2τ pmax√
pmin

for all i ∈ [m].

Then,

▶ (∀k ∈ N) E
[
F (xk+1)− F∗

]
≤

(
1− pmin

κ+ θ

)⌊ k+1
τ+1 ⌋

E
[
F (x0)− F∗

]
,

where κ ≥ 1 and θ > 0.

▶ (xk)k∈N converges strongly P-a.s. to x∗ ∈ argminF and

(∀k ∈ N) E
[
∥xk − x∗∥Γ−1

]
= O

((
1− pmin/(κ+ θ)

)⌊ k
τ+1 ⌋/2).

29

Linear convergence

Theorem (With error bound condition)
Suppose that γi <

2

Li + 2τ pmax√
pmin

for all i ∈ [m]. Then,

▶ (∀k ∈ N) E
[
F (xk+1)− F∗

]
≤

(
1− pmin

κ+ θ

)⌊ k+1
τ+1 ⌋

E
[
F (x0)− F∗

]
,

where κ ≥ 1 and θ > 0.

▶ (xk)k∈N converges strongly P-a.s. to x∗ ∈ argminF and

(∀k ∈ N) E
[
∥xk − x∗∥Γ−1

]
= O

((
1− pmin/(κ+ θ)

)⌊ k
τ+1 ⌋/2).

29

Linear convergence

Theorem (With error bound condition)
Suppose that γi <

2

Li + 2τ pmax√
pmin

for all i ∈ [m]. Then,

▶ (∀k ∈ N) E
[
F (xk+1)− F∗

]
≤

(
1− pmin

κ+ θ

)⌊ k+1
τ+1 ⌋

E
[
F (x0)− F∗

]
,

where κ ≥ 1 and θ > 0.

▶ (xk)k∈N converges strongly P-a.s. to x∗ ∈ argminF and

(∀k ∈ N) E
[
∥xk − x∗∥Γ−1

]
= O

((
1− pmin/(κ+ θ)

)⌊ k
τ+1 ⌋/2).

29

Related works

▶ Liu and Wright3

– constant stepsize
– uniform probability
– geometric (exponential) dependence of the stepsize on the delay.

▶ Salzo and Villa
– No delay consideration.

▶ Other works: Davis , Cannelli et al.

3Liu et al., “Asynchronous stochastic coordinate descent: Parallelism and convergence properties”.
30

Related works

▶ Liu and Wright3

– constant stepsize
– uniform probability
– geometric (exponential) dependence of the stepsize on the delay.

▶ Salzo and Villa4

– No delay consideration.

▶ Other works: Davis , Cannelli et al.

3Liu et al., “Asynchronous stochastic coordinate descent: Parallelism and convergence properties”.
4Salzo et al., “Parallel random block-coordinate forward–backward algorithm: a unified convergence analysis”.

30

Related works

▶ Liu and Wright3

– constant stepsize
– uniform probability
– geometric (exponential) dependence of the stepsize on the delay.

▶ Salzo and Villa4

– No delay consideration.
▶ Other works: Davis5, Cannelli et al.6

3Liu et al., “Asynchronous stochastic coordinate descent: Parallelism and convergence properties”.
4Salzo et al., “Parallel random block-coordinate forward–backward algorithm: a unified convergence analysis”.
5Davis, “The asynchronous palm algorithm for nonsmooth nonconvex problems”.
6Cannelli et al., “Asynchronous parallel algorithms for nonconvex optimization”.

30

Experiments

A ∈ Rn×m and b ∈ Rn,

minimize
x∈Rm

1

2
∥Ax− b∥22 + λ∥x∥1 (λ > 0) .

Here, f(x) = (1/2)∥Ax− b∥22 and gi(xi) = λ|xi|.

31

Comparing to existing works

32

Comparing to existing works

33

Comparing to existing works

34

Remarks on the delay vector

▶ inconsistent read

▶ Need τ to fix the stepsize.

▶ independence of the coordinates

35

Remarks on the delay vector

▶ inconsistent read

▶ Need τ to fix the stepsize.

▶ independence of the coordinates

35

Remarks on the delay vector

▶ inconsistent read

▶ Need τ to fix the stepsize.

▶ independence of the coordinates

35

Outline

General introduction

Asynchronous Forward-Backward

Variance reduction techniques for SPPA

Conclusion

36

Problem

Recall the first case:

minimize
x∈H

F (x) =
1

n

n∑
i=1

fi(x),

where for all i ∈ [n], fi : H → R.

37

SGD

For all k ∈ N,
xk+1 = xk − γk∇fik(x

k)

▶ γk → 0 . For instance, γk =
γ0
kβ

with β ∈ [1/2, 1].

▶ Rates in expectation: O
(

1√
k

)
for the convex case and O(1/k) for the strongly

convex case.

38

SGD

For all k ∈ N,
xk+1 = xk − γk∇fik(x

k)

▶ γk → 0 .

For instance, γk =
γ0
kβ

with β ∈ [1/2, 1].

▶ Rates in expectation: O
(

1√
k

)
for the convex case and O(1/k) for the strongly

convex case.

38

SGD

For all k ∈ N,
xk+1 = xk − γk∇fik(x

k)

▶ γk → 0 . For instance, γk =
γ0
kβ

with β ∈ [1/2, 1].

▶ Rates in expectation: O
(

1√
k

)
for the convex case and O(1/k) for the strongly

convex case.

38

SGD

For all k ∈ N,
xk+1 = xk − γk∇fik(x

k)

▶ γk → 0 . For instance, γk =
γ0
kβ

with β ∈ [1/2, 1].

▶ Rates in expectation: O
(

1√
k

)
for the convex case and O(1/k) for the strongly

convex case.

38

SGD instable w.r.t. γ0

39

How can we alleviate the instability with respect to γ0?

By using, for example, stochastic proximal point algorithm (SPPA)!

40

How can we alleviate the instability with respect to γ0?

By using, for example, stochastic proximal point algorithm (SPPA)!

40

SPPA

For all k ∈ N,
xk+1 = proxγkfik

(xk).

Converges with same stepsize rule as SGD!!

41

SPPA

For all k ∈ N,
xk+1 = proxγkfik

(xk).

Converges with same stepsize rule as SGD!!

41

SPPA more stable

(a) SPPA (b) SGD
42

SPPA more stable

From Asi and Duchi7:

7Asi et al., “Stochastic (approximate) proximal point methods: convergence, optimality, and adaptivity”.
43

What about the rates ?

Does SPPA help recover the full GD rates ?

No! Same as SGD.

44

What about the rates ?

Does SPPA help recover the full GD rates ?

No! Same as SGD.

44

What about the rates ?

Does SPPA help recover the full GD rates ?

No! Same as SGD.

44

One problem with SPPA8 and SGD9 bounds

∀i ∈ [n] fi convex and L−smooth:

E[F (x̄k)− F∗] ≤
dist(x0, argminF)2∑k−1

t=0 γt
+ 2σ2

∑k−1
t=0 γ2

t∑k−1
t=0 γt

,

8Traoré, Apidopoulos, et al., “Variance reduction techniques for stochastic proximal point algorithms”.
9Garrigos et al., “Handbook of convergence theorems for (stochastic) gradient methods”.

45

One problem with SPPA8 and SGD9 bounds

∀i ∈ [n] fi convex and L−smooth:

E[F (x̄k)− F∗] ≤
dist(x0, argminF)2∑k−1

t=0 γt
+ 2σ2

∑k−1
t=0 γ2

t∑k−1
t=0 γt

,

σ2 := sup
x∗∈argmin F

E∥∇fi(x
∗)− E[∇fi(x

∗)]∥2.

8Traoré, Apidopoulos, et al., “Variance reduction techniques for stochastic proximal point algorithms”.
9Garrigos et al., “Handbook of convergence theorems for (stochastic) gradient methods”.

45

“Can we do better ?”, Dr. Cris Vega, modern day philosopher.

Yes, by using variance reduction techniques!

46

“Can we do better ?”, Dr. Cris Vega, modern day philosopher.

Yes, by using variance reduction techniques!

46

A way to reduce the variance of a R.V.

▶ X a random variable (R.V.).

– Goal: reduce variance of X.

▶ Given Z , easy-to-compute E[Z].

▶ Define
XZ := X − Z + E[Z].

▶ We want
Var(XZ) < Var(X).

▶ We know
Var(XZ) = Var(X) + Var(Z)− 2Cov(X,Z).

▶ It is sufficient to have Cov(X,Z) > 1
2Var(Z).

47

A way to reduce the variance of a R.V.

▶ X a random variable (R.V.).
– Goal: reduce variance of X.

▶ Given Z , easy-to-compute E[Z].

▶ Define
XZ := X − Z + E[Z].

▶ We want
Var(XZ) < Var(X).

▶ We know
Var(XZ) = Var(X) + Var(Z)− 2Cov(X,Z).

▶ It is sufficient to have Cov(X,Z) > 1
2Var(Z).

47

A way to reduce the variance of a R.V.

▶ X a random variable (R.V.).
– Goal: reduce variance of X.

▶ Given Z , easy-to-compute E[Z].

▶ Define
XZ := X − Z + E[Z].

▶ We want
Var(XZ) < Var(X).

▶ We know
Var(XZ) = Var(X) + Var(Z)− 2Cov(X,Z).

▶ It is sufficient to have Cov(X,Z) > 1
2Var(Z).

47

A way to reduce the variance of a R.V.

▶ X a random variable (R.V.).
– Goal: reduce variance of X.

▶ Given Z , easy-to-compute E[Z].

▶ Define
XZ := X − Z + E[Z].

▶ We want
Var(XZ) < Var(X).

▶ We know
Var(XZ) = Var(X) + Var(Z)− 2Cov(X,Z).

▶ It is sufficient to have Cov(X,Z) > 1
2Var(Z).

47

A way to reduce the variance of a R.V.

▶ X a random variable (R.V.).
– Goal: reduce variance of X.

▶ Given Z , easy-to-compute E[Z].

▶ Define
XZ := X − Z + E[Z].

▶ We want
Var(XZ) < Var(X).

▶ We know
Var(XZ) = Var(X) + Var(Z)− 2Cov(X,Z).

▶ It is sufficient to have Cov(X,Z) > 1
2Var(Z).

47

A way to reduce the variance of a R.V.

▶ X a random variable (R.V.).
– Goal: reduce variance of X.

▶ Given Z , easy-to-compute E[Z].

▶ Define
XZ := X − Z + E[Z].

▶ We want
Var(XZ) < Var(X).

▶ We know
Var(XZ) = Var(X) + Var(Z)− 2Cov(X,Z).

▶ It is sufficient to have Cov(X,Z) > 1
2Var(Z).

47

A way to reduce the variance of a R.V.

▶ X a random variable (R.V.).
– Goal: reduce variance of X.

▶ Given Z , easy-to-compute E[Z].

▶ Define
XZ := X − Z + E[Z].

▶ We want
Var(XZ) < Var(X).

▶ We know
Var(XZ) = Var(X) + Var(Z)− 2Cov(X,Z).

▶ It is sufficient to have Cov(X,Z) > 1
2Var(Z).

47

General variance reduction scheme for SGD

▶ At each iteration k, X = ∇fik(x
k) and E[X|xk] = 1

n

∑n
i=1 ∇fi(x

k) = ∇F (xk).

▶ Goal: find a good Z and replace X = ∇fik(x
k) by

XZ := ∇fik(x
k)− Z + E[Z|xk].

▶ Depending on the choice of Z and how it is used, we get different algorithms.

48

General variance reduction scheme for SGD

▶ At each iteration k, X = ∇fik(x
k) and E[X|xk] = 1

n

∑n
i=1 ∇fi(x

k) = ∇F (xk).

▶ Goal: find a good Z and replace X = ∇fik(x
k) by

XZ := ∇fik(x
k)− Z + E[Z|xk].

▶ Depending on the choice of Z and how it is used, we get different algorithms.

48

General variance reduction scheme for SGD

▶ At each iteration k, X = ∇fik(x
k) and E[X|xk] = 1

n

∑n
i=1 ∇fi(x

k) = ∇F (xk).

▶ Goal: find a good Z and replace X = ∇fik(x
k) by

XZ := ∇fik(x
k)− Z + E[Z|xk].

▶ Depending on the choice of Z and how it is used, we get different algorithms.

48

At iteration k, Z = ∇fik(x̃ = xk−d). Then XZ := ∇fik(x
k)−∇fik(x̃) + E[∇fik(x̃) |xk].

Algorithm
Let γ > 0 and set x̃0 ∈ H. Then

for s = 0, 1, . . .

x0 = x̃s, compute ∇F (x̃s)

for k = 0, . . . , ℓ− 1 choose ik uniformly at random in [n]

xk+1 = xk − γ
(
∇fik(x

k)−∇fik(x̃
s) +∇F (x̃s)

)
choose ξs uniformly at random in {0, 1, · · · ℓ− 1}

x̃s+1 =
∑ℓ−1

k=0 δk,ξsx
k,

where δk,h is the Kronecker symbol.

49

Stochastic variance reduced gradient (SVRG)10

At iteration k, Z = ∇fik(x̃ = xk−d). Then XZ := ∇fik(x
k)−∇fik(x̃) + E[∇fik(x̃) |xk].

Algorithm
Let γ > 0 and set x̃0 ∈ H. Then

for s = 0, 1, . . .

x0 = x̃s, compute ∇F (x̃s)

for k = 0, . . . , ℓ− 1 choose ik uniformly at random in [n]

xk+1 = xk − γ
(
∇fik(x

k)−∇fik(x̃
s) +∇F (x̃s)

)
choose ξs uniformly at random in {0, 1, · · · ℓ− 1}

x̃s+1 =
∑ℓ−1

k=0 δk,ξsx
k,

where δk,h is the Kronecker symbol.
10Johnson et al., “Accelerating stochastic gradient descent using predictive variance reduction”.

49

At iteration k, Z = ∇fik(ϕ
k
ik

= xk−d), with fik−d
= fik . Then

XZ := ∇fik(x
k)−∇fik(ϕ

k
ik
) + E[∇fik(ϕ

k
ik
) |xk].

Algorithm
Let γ > 0. Set x0 ∈ H and, ∀i ∈ [n], ϕ0

i = x0. Then

for k = 0, 1, . . .
choose ik uniformly at random in [n]

xk+1 = xk − γ
(
∇fik(x

k)−∇fik(ϕ
k
ik
) + 1

n

∑n
i=1 ∇fi(ϕ

k
i)
)
,

∀ i ∈ [n] : ϕk+1
i = ϕk

i + δi,ik(x
k − ϕk

i),

where δi,j is the Kronecker symbol.

50

Stochastic average gradient algorithm (SAGA)11

At iteration k, Z = ∇fik(ϕ
k
ik

= xk−d), with fik−d
= fik . Then

XZ := ∇fik(x
k)−∇fik(ϕ

k
ik
) + E[∇fik(ϕ

k
ik
) |xk].

Algorithm
Let γ > 0. Set x0 ∈ H and, ∀i ∈ [n], ϕ0

i = x0. Then

for k = 0, 1, . . .
choose ik uniformly at random in [n]

xk+1 = xk − γ
(
∇fik(x

k)−∇fik(ϕ
k
ik
) + 1

n

∑n
i=1 ∇fi(ϕ

k
i)
)
,

∀ i ∈ [n] : ϕk+1
i = ϕk

i + δi,ik(x
k − ϕk

i),

where δi,j is the Kronecker symbol.
11Defazio et al., “SAGA: A fast incremental gradient method with support for non-strongly convex composite objec-

tives”.
50

Variance reduction worked for SGD

Algorithm Rates for strongly convex F Cost of 1 Iteration
GD O(εk) O(n)

SGD O (1/k) O(1)
V.R. O(εk) O(1)

O(1) = cost of ∇fi(x).

51

Our goal: variance reduction for SPPA.

52

Algorithm proposed12

Algorithm (Generic)
Let γ > 0 and x0 ∈ H. Then

for k = 0, 1, . . .⌊
choose ik uniformly at random in [n]

xk+1 = proxγfik
(
xk + γek

)
.

Let wk = ∇fik(x
k+1)− ek.

xk+1 = xk − γ
[
∇fik(x

k+1)− ek
]
= xk − γwk.

For the analysis we consider
vk := ∇fik(x

k)− ek.

12Traoré, Apidopoulos, et al., “Variance reduction techniques for stochastic proximal point algorithms”.
53

Algorithm proposed12

Algorithm (Generic)
Let γ > 0 and x0 ∈ H. Then

for k = 0, 1, . . .⌊
choose ik uniformly at random in [n]

xk+1 = proxγfik
(
xk + γek

)
.

Let wk = ∇fik(x
k+1)− ek.

xk+1 = xk − γ
[
∇fik(x

k+1)− ek
]
= xk − γwk.

For the analysis we consider
vk := ∇fik(x

k)− ek.

12Traoré, Apidopoulos, et al., “Variance reduction techniques for stochastic proximal point algorithms”.
53

Algorithm proposed12

Algorithm (Generic)
Let γ > 0 and x0 ∈ H. Then

for k = 0, 1, . . .⌊
choose ik uniformly at random in [n]

xk+1 = proxγfik
(
xk + γek

)
.

Let wk = ∇fik(x
k+1)− ek.

xk+1 = xk − γ
[
∇fik(x

k+1)− ek
]
= xk − γwk.

For the analysis we consider
vk := ∇fik(x

k)− ek.

12Traoré, Apidopoulos, et al., “Variance reduction techniques for stochastic proximal point algorithms”.
53

Algorithm proposed12

Algorithm (Generic)
Let γ > 0 and x0 ∈ H. Then

for k = 0, 1, . . .⌊
choose ik uniformly at random in [n]

xk+1 = proxγfik
(
xk + γek

)
.

Let wk = ∇fik(x
k+1)− ek.

xk+1 = xk − γ
[
∇fik(x

k+1)− ek
]
= xk − γwk.

For the analysis we consider
vk := ∇fik(x

k)− ek.

12Traoré, Apidopoulos, et al., “Variance reduction techniques for stochastic proximal point algorithms”.
53

Assumptions

Let A,B,D ∈ R+ and ρ ∈ [0, 1] and a real-valued random variable C such that, for every
k ∈ N,

1. E[ek |Fk] = 0 a.s.,

2. E
[
∥vk∥2 |Fk

]
≤ 2A(F (xk)− F∗) +Bσ2

k + C a.s.,

3. E
[
σ2
k+1

]
≤ (1− ρ)E

[
σ2
k

]
+ 2DE[F (xk)− F∗].

54

Assumptions

Let A,B,D ∈ R+ and ρ ∈ [0, 1] and a real-valued random variable C such that, for every
k ∈ N,

1. E[ek |Fk] = 0 a.s.,

2. E
[
∥vk∥2 |Fk

]
≤ 2A(F (xk)− F∗) +Bσ2

k + C a.s.,

3. E
[
σ2
k+1

]
≤ (1− ρ)E

[
σ2
k

]
+ 2DE[F (xk)− F∗].

54

Assumptions

Let A,B,D ∈ R+ and ρ ∈ [0, 1] and a real-valued random variable C such that, for every
k ∈ N,

1. E[ek |Fk] = 0 a.s.,

2. E
[
∥vk∥2 |Fk

]
≤ 2A(F (xk)− F∗) +Bσ2

k + C a.s.,

3. E
[
σ2
k+1

]
≤ (1− ρ)E

[
σ2
k

]
+ 2DE[F (xk)− F∗].

54

Assumptions

1. argminF ̸= ∅.

2. For all i ∈ [n], fi is convex and, moreover, L-smooth, i.e., differentiable and such that

(∀x, y ∈ H) ∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥

for some L > 0. As a consequence, F is convex and L-smooth.

3. F satisfies the PL condition with constant µ > 0, i.e.,

(∀x ∈ H) F (x)− F∗ ≤ 1

2µ
∥∇F (x)∥2.

55

Common result

Proposition
Let M > 0. Then, for all k ∈ N,

E[dist(xk+1, argminF)2] + γ2ME[σ2
k+1] ≤ E[dist(xk, argminF)2] + γ2 [M +B − ρM]E[σ2

k]

− 2γ [1− γ(A+MD)]E[F (xk)− F∗]

+ γ2E[C].

56

Convex F

Theorem
Let M > 0 and γ > 0 be such that M ≥ B/ρ and γ < 1/(A+MD). Then,

(∀k ∈ N) E[F (x̄k)− F∗] ≤
dist(x0, argminF)2 + γ2ME[σ2

0]

2γk [1− γ(A+MD)]
,

with x̄k = 1
k

∑k−1
t=0 xt.

57

F satisfying PL

Theorem
Let M be such that M > B/ρ and γ > 0 such that γ < 1/(A+MD).
Set

q := max

{
1− γµ (1− γ(A+MD)) , 1 +

B

M
− ρ

}
.

Then q ∈]0, 1[and

(∀k ∈ N) E[dist(xk, argminF)2] ≤ qk
(
dist(x0, argminF)2 + γ2ME[σ2

0]
)
,

E[F (xk)− F∗] ≤
qkL

2

(
dist(x0, argminF)2 + γ2ME[σ2

0]
)
.

58

SVRP

Algorithm (SVRP)
Let γ > 0 and x̃0 ∈ H. Then

for s = 0, 1, . . .

x0 = x̃s, compute ∇F (x̃s)

for k = 0, . . . , ℓ− 1 choose ik uniformly at random in [n]

xk+1 = proxγfik
(
xk + γ∇fik(x̃

s)− γ∇F (x̃s)
)

choose ξs uniformly at random in {0, 1, · · · ℓ− 1}

x̃s+1 =
∑ℓ−1

k=0 δk,ξsx
k,

where δk,h is the Kronecker symbol.

59

SVRP results

Theorem (PL case)
Suppose that

0 < γ <
1

2(2L− µ)
and ℓ >

1

µγ(1− 2γ(2L− µ))
.

Then
(∀s ∈ N) E

[
F
(
x̃s+1

)
− F∗

]
≤ qs

(
F (x0)− F∗

)
,

with q :=

(
1

µγ(1− 2Lγ)ℓ
+

2γ(L− µ)

1− 2Lγ

)
< 1.

60

L-SVRP

Algorithm (L-SVRP)
Let γ > 0 and set x0 = u0 ∈ H. Then

for k = 0, 1, . . .
choose ik uniformly at random in [n]

xk+1 = proxγfik
(
xk + γ∇fik(u

k)− γ∇F (uk)
)

εk Bernoulli r.v. with P(εk = 1) = p ∈]0, 1]

uk+1 = (1− εk)uk + εkxk,

61

L-SVRP results

Corollary (Convex case)
Let M ≥ 2

p and γ < 1
L(2+pM) . Then

(∀k ∈ N) E[F (x̄k)− F∗] ≤
dist(x0, argminF)2 + γ2ME[σ2

0]

2γk [1− γL(2 + pM)]
,

with x̄k = 1
k

∑k−1
t=0 xt.

62

L-SVRP results

Corollary (PL case)
Let M > 2/p and γ < 1

L(2+pM) . Then

(∀k ∈ N) E[dist(xk, argminF)]2 ≤ qk
(
dist(x0, argminF)2 + γ2ME[σ2

0]
)
,

E[F (xk)− F∗] ≤
qkL

2

(
dist(x0, argminF)2 + γ2ME[σ2

0]
)
,

with 0 < q < 1.

63

SAPA

Algorithm (SAPA)
Let γ > 0. Set x0 ∈ H and, ∀i ∈ [n], ϕ0

i = x0. Then

for k = 0, 1, . . .
choose ik uniformly at random in [n]

xk+1 = proxγfik
(
xk + γ∇fik(ϕ

k
ik
)− γ

n

∑n
i=1 ∇fi(ϕ

k
i)
)

∀ i ∈ [n] : ϕk+1
i = ϕk

i + δi,ik(x
k − ϕk

i),

where δi,j is the Kronecker symbol.

64

SAPA results

Corollary (Convex case)
Let M ≥ 2n and γ < 1

L(2+M/n) . Then

(∀k ∈ N) E[F (x̄k)− F∗] ≤
dist(x0, argminF)2 + γ2ME[σ2

0]

2γk [1− γL(2 +M/n)]
,

with x̄k = 1
k

∑k−1
t=0 xt.

65

SAPA results

Corollary (PL case)
Let M > 2n and γ < 1

L(2+M/n) . Then

(∀k ∈ N) E[dist(xk, argminF)]2 ≤ qk
(
dist(x0, argminF)2 + γ2ME[σ2

0]
)
,

E[F (xk)− F∗] ≤
qkL

2

(
dist(x0, argminF)2 + γ2ME[σ2

0]
)
,

with 0 < q < 1.

66

Related works

Algorithm Smooth + convex Smooth + SC Smooth + PL Non-smooth + SC
Defazio13 Point-Saga NA O(εk) NA O(1/k)

Khaled et al.14 L-SVRP NA O(εk) NA NA
Milzarek et al.15 SNSPP NA O(εk) NA NA
Traoré et al.16 Unified O(1/k) (not for SVRP) O(εk) O(εk) NA

Table: Comparison to related works.

13Defazio, “A simple practical accelerated method for finite sums”.
14Khaled et al., “Faster federated optimization under second-order similarity”.
15Milzarek et al., “A semismooth Newton stochastic proximal point algorithm with variance reduction”.
16Traoré, Apidopoulos, et al., “Variance reduction techniques for stochastic proximal point algorithms”.

67

Experiments

Ordinary least squares (OLS):

minimize
x∈Rm

F (x) =
1

2n
∥Ax− b∥2 =

1

n

n∑
i=1

1

2
(⟨ai, x⟩ − bi)

2
,

where ai is the ith row of the matrix A ∈ Rn×m and bi ∈ R for all i ∈ [n]

68

SAPA/SVRP/SPPA

Figure: SAPA (blue) and SVRP (green) compared to SPPA (orange).

69

SAGA/SAPA

Figure: SAPA (in blue) compared to SAGA (in orange).

70

SVRG/SVRP

Figure: SVRP (in blue) compared SVRG (in orange).

71

Remarks on the results

▶ We only have results for the smooth case.

▶ For SVRP, no results for the convex case.

▶ We have derived results for SPPA from the generic algorithm.

72

Remarks on the results

▶ We only have results for the smooth case.

▶ For SVRP, no results for the convex case.

▶ We have derived results for SPPA from the generic algorithm.

72

Remarks on the results

▶ We only have results for the smooth case.

▶ For SVRP, no results for the convex case.

▶ We have derived results for SPPA from the generic algorithm.

72

Outline

General introduction

Asynchronous Forward-Backward

Variance reduction techniques for SPPA

Conclusion

73

Conclusion

Asynchronous Forward-Backward Variance reduction for SPPA

74

Conclusion

Asynchronous Forward-Backward

Summary
▶ considered with abstract probability and

coordinate-wise adaptive stepsize
▶ provided convergence of the iterates
▶ provided standard convergence rates for

convex and error bound cases
▶ results depend linearly on τ

Variance reduction for SPPA

Summary
▶ made a unified study
▶ proved standard rates for convex and PL

cases
▶ recovered proximal version of standard

gradient variance reduced algorithms
▶ empirical comparison

74

Conclusion

Asynchronous Forward-Backward

Summary
▶ considered with abstract probability and

coordinate-wise adaptive stepsize
▶ provided convergence of the iterates
▶ provided standard convergence rates for

convex and error bound cases
▶ results depend linearly on τ

Future directions
▶ results for delay-wise adaptive stepsize
▶ considered coordinates dependent delay
▶ prove the tightest delay dependence

Variance reduction for SPPA

Summary
▶ made a unified study
▶ proved standard rates for convex and PL

cases
▶ recovered proximal version of standard

gradient variance reduced algorithms
▶ empirical comparison

Future directions
▶ convex case for SVRP
▶ non-smooth analysis
▶ Bregman and/or zeroth-order versions

74

Conclusion

Asynchronous Forward-Backward

Summary
▶ considered with abstract probability and

coordinate-wise adaptive stepsize
▶ provided convergence of the iterates
▶ provided standard convergence rates for

convex and error bound cases
▶ results depend linearly on τ

Future directions
▶ results for delay-wise adaptive stepsize
▶ considered coordinates dependent delay
▶ prove the tightest delay dependence

Variance reduction for SPPA

Summary
▶ made a unified study
▶ proved standard rates for convex and PL

cases
▶ recovered proximal version of standard

gradient variance reduced algorithms
▶ empirical comparison

Future directions
▶ convex case for SVRP
▶ non-smooth analysis
▶ Bregman and/or zeroth-order versions

74

Conclusion
Asynchronous Forward-Backward

Summary
▶ considered with abstract probability and

coordinate-wise adaptive stepsize
▶ provided convergence of the iterates
▶ provided standard convergence rates for

convex and error bound cases
▶ results depend linearly on τ

Future directions
▶ results for delay-wise adaptive stepsize
▶ considered coordinates dependent delay
▶ prove the tightest delay dependence

Variance reduction for SPPA

Summary
▶ made a unified study
▶ proved standard rates for convex and PL

cases
▶ recovered proximal version of standard

gradient variance reduced algorithms
▶ empirical comparison

Future directions
▶ convex case for SVRP
▶ non-smooth analysis
▶ Bregman and/or zeroth-order versions

Thank you for your attention!!
74

	General introduction
	Asynchronous Forward-Backward
	Variance reduction techniques for SPPA
	Conclusion

