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Context

Training dataset:
(
ui, yi

)
i∈{1,2,··· ,n}.

minimize
x∈Rm

1

n

n∑
i=1

ℓ(f(ui;x), yi) + λR(x).

2



Context

Training dataset:
(
ui, yi

)
i∈{1,2,··· ,n}.

minimize
x∈Rm

1

n

n∑
i=1

ℓ(f(ui;x), yi) + λR(x).

ui
1

ui
2

h11

h12

h13

h21

h22

h23

h31

h32

h33

f(ui,x)

x1

x2

x
3

x4

x5

x6

x7

x
8

x
9

x10

x11

x
12

x 13

x14

x15

x16
x
17

x
18

x19

x20

x
21

x 22

x23

x24

x
25

x26

x27

2



Context

Training dataset:
(
ui, yi

)
i∈{1,2,··· ,n}.

minimize
x∈Rm

1

n

n∑
i=1

ℓ(f(ui;x), yi) + λR(x).

ui
1

ui
2

h11

h12

h13

h21

h22

h23

h31

h32

h33

f(ui,x)

x1

x2

x
3

x4

x5

x6

x7

x
8

x
9

x10

x11

x
12

x 13

x14

x15

x16
x
17

x
18

x19

x20

x
21

x 22

x23

x24

x
25

x26

x27

n and m can be very big: several BILLIONS!!!

2



Context

Training dataset:
(
ui, yi

)
i∈{1,2,··· ,n}.

minimize
x∈Rm

1

n

n∑
i=1

ℓ(f(ui;x), yi) + λR(x).

ui
1

ui
2

h11

h12

h13

h21

h22

h23

h31

h32

h33

f(ui,x)

x1

x2

x
3

x4

x5

x6

x7

x
8

x
9

x10

x11

x
12

x 13

x14

x15

x16
x
17

x
18

x19

x20

x
21

x 22

x23

x24

x
25

x26

x27

n and m can be very big: several BILLIONS!!!

ChatGP4: estimated 1.76 trillion parameters (Georges Hotz).
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Optimization for data science

Goal:
minimize

x∈H
F (x) = f(x) + g(x),

where H is a separable real Hilbert space and F, f, g : H → R.

Example:

minimize
x∈Rm

F (x) =
1

n

n∑
i=1

fi(x)︸ ︷︷ ︸
f(x)

+λR(x)︸ ︷︷ ︸
g(x)

,
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Most popular method

Gradient descent (GD):
x0 ∈ H

xk+1 = xk − γk∇F (xk).
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GD rates

F is µ−strongly convex for µ ≥ 0

:

(∀x,y ∈ H) (t ∈ [0, 1]) F (tx+ (1− t)y) ≤ tF (x) + (1− t)F (y)− µ

2
t(1− t)∥x− y∥2.

F is L−smooth for L ≥ 0:

(∀x,y ∈ H) ∥∇F (x)−∇F (y)∥ ≤ L∥x− y∥
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GD rates

Let γk = 1
L .

▶ If µ = 0,
F (xk)− F∗ ≤ O(1/k) (sublinear rate).

▶ If µ > 0,
F (xk)− F∗ ≤ O(εk) (linear rate),

with ϵ < 1.
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Sum of functions problem

First case: g ≡ 0 and f(x) = 1
n

∑n
i=1 fi(x).

The problem is now:

minimize
x∈H

F (x) =
1

n

n∑
i=1

fi(x).
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Stochastic gradient descent (SGD)

SGD update is:

Select uniformly at random ik ∈ [n] := {1, 2, . . . , n} and do

xk+1 = xk − γk∇fik(x
k).
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Non-smooth problem

Second case: g is not differentiable.

The problem is:
minimize

x∈H
F (x) = f(x) + g(x),

with f smooth.

So F is non-smooth!!
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Subgradient descent

Update:

xk+1 = xk − γk∂F (xk).

Rates with γk → 0 and bounded subgradient:

▶ Convex case: F (x̄k)− F∗ ≤ O
(

1√
k

)
.

▶ Strongly convex case: F (x̄k)− F∗ ≤ O (1/k).

x̄k =
∑k

t=i ptx
t with

∑k
t=i pt = 1 .
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Subgradient descent

Update:
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Rates with γk → 0 and bounded subgradient:

▶ Convex case: F (x̄k)− F∗ ≤ O
(

1√
k

)
.

▶ Strongly convex case: F (x̄k)− F∗ ≤ O (1/k).

x̄k =
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t=i ptx
t with

∑k
t=i pt = 1 (ergodic rates).

11



Proximal Point Algorithm (PPA)

Update:

xk+1 = proxγkF
(xk) = proxγk(f+g)(x

k)

= argmin
x

F (x) +
1

2γk
∥x− xk∥2

= argmin
x

f(x) + g(x) +
1

2γk
∥x− xk∥2.

Rates with γk = γ ∈ R+:

▶ Convex case: F (xk)− F∗ ≤ O(1/k).

▶ Strongly convex case: F (xk)− F∗ ≤ O(εk), with ϵ < 1.
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Forward-Backward

Proximal gradient (Forward-Backward) update:

xk+1 = proxγkg

(
xk − γk∇f(xk)

)
.

Rates with γk = 1
L :

▶ Convex case: F (xk)− F∗ ≤ O(1/k).

▶ Strongly convex case: F (xk)− F∗ ≤ O(εk), with ϵ < 1.
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Parallel Forward-Backward

Suppose that H =
⊕m

i=1 Hi, that we have a central server S and m machines:
M1,M2, · · · ,Mm.

▶ For i ∈ {1, 2, · · · ,m}, machine Mi computes ∇if(x
k).

▶ The server S reconstitutes ∇f(xk),

▶ and makes the update:

xk+1 = proxγkg

(
xk − γk∇f(xk)

)
.
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Synchronous Parallel Forward-Backward
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Problem setting

Consider:

minimize
x∈H

F (x) = f(x) + g(x), g(x) =
m∑
i=1

gi(xi),

where H =
⊕m

i=1 Hi.
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Coordinate Forward-Backward

Algorithm
Let (γi)1≤i≤m ∈ Rm

++ and x0 = (x0
1, . . . , x

0
m) ∈ H. Iterate

for k = 0, 1, . . .
choose ik uniformly at random in [m] := {1, 2, . . . ,m}

for i = 1, . . . ,m⌊
xk+1
i =

{
proxγigi

(
xk
i − γi∇if(x

k)
)

if i = ik

xk
i if i ̸= ik.

17



Asynchronous Forward-Backward

Server S and m machines: M1,M2, · · · ,Mm.

▶ For i ∈ {1, 2, · · · ,m}, machine Mi computes ∇if(x
k).

▶ The server S receives ∇ikf(x
k) from machine Mik ,

▶ and makes the update:

xk+1
ik

= proxγik
gik

(
xk
ik
− γik∇ikf(x

k)
)
.
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Delayed gradient in asynchronous setting

𝑋! = (𝑥"
!, 𝑥#

!, 𝑥$
!)

M1 M2

𝑥!" 𝑥!"

𝑥!! = 𝑎𝑙𝑔𝑜 𝑥!", ∇!𝑓(𝑋")
𝑋! ← 𝑋"

𝑥!# = 𝑎𝑙𝑔𝑜 𝑥!$, ∇!𝑓(𝑋")
∇!𝑓 𝑋" = ∇!𝑓 𝑋$%$ ≠ ∇!𝑓 𝑋$

𝑋# ← 𝑋$

k=0

k=1

M3

𝑥$$ = 𝑎𝑙𝑔𝑜 𝑥$!, ∇$𝑓(𝑋")
∇$𝑓 𝑋" = ∇$𝑓 𝑋!%! ≠ ∇$𝑓 𝑋!

𝑋$ ← 𝑋!

k=2

𝑥$"
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Asynchronous Forward-Backward

Algorithm
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i =
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Read paradigm

▶ Consistent read

▶ Inconsistent read
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Inconsistent read

𝑥!" 𝑥#" 𝑥$"M1 reading

M2 updating

M2 updating

M1 reading

Shared data 
representation

Data read by M1 
(local)

M1 reading

k=0

k=2

k=4

k=4

M3 updating

M3 updating

𝑥!" 𝑥#" 𝑥$"

𝑥!! 𝑥#! 𝑥$!

𝑥!"

𝑥!"k=1

𝑥!"

𝑥!"

𝑥!" 𝑥!# 𝑥## 𝑥$#

𝑥!# 𝑥## 𝑥$#𝑥##

𝑥##k=3 𝑥!$ 𝑥#$ 𝑥$$
k=2

𝑥!% 𝑥#% 𝑥$%𝑥!" 𝑥##

𝑥!" 𝑥## 𝑥$% 𝑥!% 𝑥#% 𝑥$%

k=0
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Algorithm studied2

Algorithm
Let (γi)1≤i≤m ⊂ Rm

++ and x0 = (x0
1, . . . , x

0
m) ∈ H. Iterate

for k = 0, 1, . . .
choose randomly ik in [m] with probability pik
for i = 1, . . . ,m⌊

xk+1
i =

{
proxγigi

(
xk
i − γi∇if(x

k−dk)
)

if i = ik

xk
i if i ̸= ik,

where xk−dk = (x
k−dk1
1 , . . . , x

k−dkm
m ).

2Traoré, Salzo, et al., “Convergence of an asynchronous block-coordinate forward-backward algorithm for convex
composite optimization”.
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Assumptions

▶ f : H → R is convex and differentiable.

▶ For every i ∈ {1, · · · ,m}, gi : Hi → ]−∞,+∞] is proper convex and lower
semicontinuous.

▶ For all x ∈ H and i ∈ {1, · · · ,m}, the map ∇if(x1, . . . , xi−1, ·, xi+1, . . . , xm) : Hi → Hi is
Lipschitz continuous with constant Li. Define Lmax := maxi Li and Lmin := mini Li.

▶ For all x ∈ H and i ∈ {1, · · · ,m}, the map ∇f(x1, . . . , xi−1, ·, xi+1, . . . , xm) : Hi → H is
Lipschitz continuous with constant Lres > 0. Note that Lmax ≤ Lres.

▶ F attains its minimum F∗ := minF on H.
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Assumptions

▶ We assume that the delays are deterministic and bounded by τ .

▶ The delay vector is independent of the coordinates.
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Main result

Theorem (Convex case)
Assume that γi <

2

Li + 2τ pmax√
pmin

for all i ∈ [m].

Then,

▶ (xk)k∈N converges weakly P-a.s. to x∗ in argminF .

▶ And

(∀k ∈ N) E[F (xk)− F∗] ≤
1

k

(
dist2W(x0, argminF )

2
+ C

(
F (x0)− F∗

))
,

where C = O(τ) and W =

m⊕
i=1

1

γipi
Idi.
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(∀k ∈ N) E[F (xk)− F∗] ≤
1

k

(
dist2W(x0, argminF )

2
+ C

(
F (x0)− F∗

))
,
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m⊕
i=1

1

γipi
Idi.
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Linear convergence

Luo-Tseng error bound condition:

(∀x ∈ X) distΓ−1 (x, argminF ) ≤ CX,Γ−1

∥∥x− proxΓ
−1

g

(
x−∇Γ−1

f(x)
)∥∥

Γ−1 ,

where Γ−1 =

m⊕
i=1

1

γi
Idi.

Equivalent to quadratic growth:

(∀x ∈ X)
func(CX,Γ−1)

2
dist2Γ−1 (x, argminF ) ≤ F (xk)− F∗.
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Linear convergence

Theorem (With error bound condition)
Suppose that γi <

2

Li + 2τ pmax√
pmin

for all i ∈ [m].

Then,

▶ (∀k ∈ N) E
[
F (xk+1)− F∗

]
≤

(
1− pmin

κ+ θ

)⌊ k+1
τ+1 ⌋

E
[
F (x0)− F∗

]
,

where κ ≥ 1 and θ > 0.

▶ (xk)k∈N converges strongly P-a.s. to x∗ ∈ argminF and

(∀k ∈ N) E
[
∥xk − x∗∥Γ−1

]
= O

((
1− pmin/(κ+ θ)

)⌊ k
τ+1 ⌋/2).

29



Linear convergence

Theorem (With error bound condition)
Suppose that γi <

2

Li + 2τ pmax√
pmin

for all i ∈ [m]. Then,

▶ (∀k ∈ N) E
[
F (xk+1)− F∗

]
≤

(
1− pmin

κ+ θ

)⌊ k+1
τ+1 ⌋

E
[
F (x0)− F∗

]
,

where κ ≥ 1 and θ > 0.

▶ (xk)k∈N converges strongly P-a.s. to x∗ ∈ argminF and

(∀k ∈ N) E
[
∥xk − x∗∥Γ−1

]
= O

((
1− pmin/(κ+ θ)

)⌊ k
τ+1 ⌋/2).

29



Linear convergence

Theorem (With error bound condition)
Suppose that γi <

2

Li + 2τ pmax√
pmin

for all i ∈ [m]. Then,

▶ (∀k ∈ N) E
[
F (xk+1)− F∗

]
≤

(
1− pmin

κ+ θ

)⌊ k+1
τ+1 ⌋

E
[
F (x0)− F∗

]
,

where κ ≥ 1 and θ > 0.

▶ (xk)k∈N converges strongly P-a.s. to x∗ ∈ argminF and

(∀k ∈ N) E
[
∥xk − x∗∥Γ−1

]
= O

((
1− pmin/(κ+ θ)

)⌊ k
τ+1 ⌋/2).

29



Related works

▶ Liu and Wright3

– constant stepsize
– uniform probability
– geometric (exponential) dependence of the stepsize on the delay.

▶ Salzo and Villa
– No delay consideration.

▶ Other works: Davis , Cannelli et al.

3Liu et al., “Asynchronous stochastic coordinate descent: Parallelism and convergence properties”.
30
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▶ Other works: Davis5, Cannelli et al.6

3Liu et al., “Asynchronous stochastic coordinate descent: Parallelism and convergence properties”.
4Salzo et al., “Parallel random block-coordinate forward–backward algorithm: a unified convergence analysis”.
5Davis, “The asynchronous palm algorithm for nonsmooth nonconvex problems”.
6Cannelli et al., “Asynchronous parallel algorithms for nonconvex optimization”.
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Experiments

A ∈ Rn×m and b ∈ Rn,

minimize
x∈Rm

1

2
∥Ax− b∥22 + λ∥x∥1 (λ > 0) .

Here, f(x) = (1/2)∥Ax− b∥22 and gi(xi) = λ|xi|.

31



Comparing to existing works
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Remarks on the delay vector

▶ inconsistent read

▶ Need τ to fix the stepsize.

▶ independence of the coordinates
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Outline

General introduction

Asynchronous Forward-Backward

Variance reduction techniques for SPPA

Conclusion
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Problem

Recall the first case:

minimize
x∈H

F (x) =
1

n

n∑
i=1

fi(x),

where for all i ∈ [n], fi : H → R.
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SGD

For all k ∈ N,
xk+1 = xk − γk∇fik(x

k)

▶ γk → 0 . For instance, γk =
γ0
kβ

with β ∈ [1/2, 1].

▶ Rates in expectation: O
(

1√
k

)
for the convex case and O(1/k) for the strongly

convex case.
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SGD instable w.r.t. γ0

39



How can we alleviate the instability with respect to γ0?

By using, for example, stochastic proximal point algorithm (SPPA)!
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SPPA

For all k ∈ N,
xk+1 = proxγkfik

(xk).

Converges with same stepsize rule as SGD!!
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SPPA more stable

(a) SPPA (b) SGD
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SPPA more stable

From Asi and Duchi7:

7Asi et al., “Stochastic (approximate) proximal point methods: convergence, optimality, and adaptivity”.
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What about the rates ?

Does SPPA help recover the full GD rates ?

No! Same as SGD.
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One problem with SPPA8 and SGD9 bounds

∀i ∈ [n] fi convex and L−smooth:

E[F (x̄k)− F∗] ≤
dist(x0, argminF )2∑k−1

t=0 γt
+ 2σ2

∑k−1
t=0 γ2

t∑k−1
t=0 γt

,

8Traoré, Apidopoulos, et al., “Variance reduction techniques for stochastic proximal point algorithms”.
9Garrigos et al., “Handbook of convergence theorems for (stochastic) gradient methods”.
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One problem with SPPA8 and SGD9 bounds

∀i ∈ [n] fi convex and L−smooth:

E[F (x̄k)− F∗] ≤
dist(x0, argminF )2∑k−1

t=0 γt
+ 2σ2

∑k−1
t=0 γ2

t∑k−1
t=0 γt

,

σ2 := sup
x∗∈argmin F

E∥∇fi(x
∗)− E[∇fi(x

∗)]∥2.

8Traoré, Apidopoulos, et al., “Variance reduction techniques for stochastic proximal point algorithms”.
9Garrigos et al., “Handbook of convergence theorems for (stochastic) gradient methods”.
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“Can we do better ?”, Dr. Cris Vega, modern day philosopher.

Yes, by using variance reduction techniques!
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A way to reduce the variance of a R.V.

▶ X a random variable (R.V.).

– Goal: reduce variance of X.

▶ Given Z , easy-to-compute E[Z].

▶ Define
XZ := X − Z + E[Z].

▶ We want
Var(XZ) < Var(X).

▶ We know
Var(XZ) = Var(X) + Var(Z)− 2Cov(X,Z).

▶ It is sufficient to have Cov(X,Z) > 1
2Var(Z).
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General variance reduction scheme for SGD

▶ At each iteration k, X = ∇fik(x
k) and E[X|xk] = 1

n

∑n
i=1 ∇fi(x

k) = ∇F (xk).

▶ Goal: find a good Z and replace X = ∇fik(x
k) by

XZ := ∇fik(x
k)− Z + E[Z|xk].

▶ Depending on the choice of Z and how it is used, we get different algorithms.
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At iteration k, Z = ∇fik(x̃ = xk−d). Then XZ := ∇fik(x
k)−∇fik(x̃) + E[∇fik(x̃) |xk].

Algorithm
Let γ > 0 and set x̃0 ∈ H. Then

for s = 0, 1, . . .

x0 = x̃s, compute ∇F (x̃s)

for k = 0, . . . , ℓ− 1 choose ik uniformly at random in [n]

xk+1 = xk − γ
(
∇fik(x

k)−∇fik(x̃
s) +∇F (x̃s)

)
choose ξs uniformly at random in {0, 1, · · · ℓ− 1}

x̃s+1 =
∑ℓ−1

k=0 δk,ξsx
k,

where δk,h is the Kronecker symbol.
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Stochastic variance reduced gradient (SVRG)10

At iteration k, Z = ∇fik(x̃ = xk−d). Then XZ := ∇fik(x
k)−∇fik(x̃) + E[∇fik(x̃) |xk].

Algorithm
Let γ > 0 and set x̃0 ∈ H. Then

for s = 0, 1, . . .

x0 = x̃s, compute ∇F (x̃s)

for k = 0, . . . , ℓ− 1 choose ik uniformly at random in [n]

xk+1 = xk − γ
(
∇fik(x

k)−∇fik(x̃
s) +∇F (x̃s)

)
choose ξs uniformly at random in {0, 1, · · · ℓ− 1}

x̃s+1 =
∑ℓ−1

k=0 δk,ξsx
k,

where δk,h is the Kronecker symbol.
10Johnson et al., “Accelerating stochastic gradient descent using predictive variance reduction”.
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At iteration k, Z = ∇fik(ϕ
k
ik

= xk−d), with fik−d
= fik . Then

XZ := ∇fik(x
k)−∇fik(ϕ

k
ik
) + E[∇fik(ϕ

k
ik
) |xk].

Algorithm
Let γ > 0. Set x0 ∈ H and, ∀i ∈ [n], ϕ0

i = x0. Then

for k = 0, 1, . . .
choose ik uniformly at random in [n]

xk+1 = xk − γ
(
∇fik(x

k)−∇fik(ϕ
k
ik
) + 1

n

∑n
i=1 ∇fi(ϕ

k
i )
)
,

∀ i ∈ [n] : ϕk+1
i = ϕk

i + δi,ik(x
k − ϕk

i ),

where δi,j is the Kronecker symbol.
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Stochastic average gradient algorithm (SAGA)11

At iteration k, Z = ∇fik(ϕ
k
ik

= xk−d), with fik−d
= fik . Then

XZ := ∇fik(x
k)−∇fik(ϕ

k
ik
) + E[∇fik(ϕ

k
ik
) |xk].

Algorithm
Let γ > 0. Set x0 ∈ H and, ∀i ∈ [n], ϕ0

i = x0. Then

for k = 0, 1, . . .
choose ik uniformly at random in [n]

xk+1 = xk − γ
(
∇fik(x

k)−∇fik(ϕ
k
ik
) + 1

n

∑n
i=1 ∇fi(ϕ

k
i )
)
,

∀ i ∈ [n] : ϕk+1
i = ϕk

i + δi,ik(x
k − ϕk

i ),

where δi,j is the Kronecker symbol.
11Defazio et al., “SAGA: A fast incremental gradient method with support for non-strongly convex composite objec-

tives”.
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Variance reduction worked for SGD

Algorithm Rates for strongly convex F Cost of 1 Iteration
GD O(εk) O(n)

SGD O (1/k) O(1)
V.R. O(εk) O(1)

O(1) = cost of ∇fi(x).
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Our goal: variance reduction for SPPA.
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Algorithm proposed12

Algorithm (Generic)
Let γ > 0 and x0 ∈ H. Then

for k = 0, 1, . . .⌊
choose ik uniformly at random in [n]

xk+1 = proxγfik
(
xk + γek

)
.

Let wk = ∇fik(x
k+1)− ek.

xk+1 = xk − γ
[
∇fik(x

k+1)− ek
]
= xk − γwk.

For the analysis we consider
vk := ∇fik(x

k)− ek.

12Traoré, Apidopoulos, et al., “Variance reduction techniques for stochastic proximal point algorithms”.
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Assumptions

Let A,B,D ∈ R+ and ρ ∈ [0, 1] and a real-valued random variable C such that, for every
k ∈ N,

1. E[ek |Fk] = 0 a.s.,

2. E
[
∥vk∥2 |Fk

]
≤ 2A(F (xk)− F∗) +Bσ2

k + C a.s.,

3. E
[
σ2
k+1

]
≤ (1− ρ)E

[
σ2
k

]
+ 2DE[F (xk)− F∗].
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Assumptions

1. argminF ̸= ∅.

2. For all i ∈ [n], fi is convex and, moreover, L-smooth, i.e., differentiable and such that

(∀x, y ∈ H) ∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥

for some L > 0. As a consequence, F is convex and L-smooth.

3. F satisfies the PL condition with constant µ > 0, i.e.,

(∀x ∈ H) F (x)− F∗ ≤ 1

2µ
∥∇F (x)∥2.
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Common result

Proposition
Let M > 0. Then, for all k ∈ N,

E[dist(xk+1, argminF )2] + γ2ME[σ2
k+1] ≤ E[dist(xk, argminF )2] + γ2 [M +B − ρM ]E[σ2

k]

− 2γ [1− γ(A+MD)]E[F (xk)− F∗]

+ γ2E[C].

56



Convex F

Theorem
Let M > 0 and γ > 0 be such that M ≥ B/ρ and γ < 1/(A+MD). Then,

(∀k ∈ N) E[F (x̄k)− F∗] ≤
dist(x0, argminF )2 + γ2ME[σ2

0 ]

2γk [1− γ(A+MD)]
,

with x̄k = 1
k

∑k−1
t=0 xt.
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F satisfying PL

Theorem
Let M be such that M > B/ρ and γ > 0 such that γ < 1/(A+MD).
Set

q := max

{
1− γµ (1− γ(A+MD)) , 1 +

B

M
− ρ

}
.

Then q ∈]0, 1[ and

(∀k ∈ N) E[dist(xk, argminF )2] ≤ qk
(
dist(x0, argminF )2 + γ2ME[σ2

0 ]
)
,

E[F (xk)− F∗] ≤
qkL

2

(
dist(x0, argminF )2 + γ2ME[σ2

0 ]
)
.
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SVRP

Algorithm (SVRP)
Let γ > 0 and x̃0 ∈ H. Then

for s = 0, 1, . . .

x0 = x̃s, compute ∇F (x̃s)

for k = 0, . . . , ℓ− 1 choose ik uniformly at random in [n]

xk+1 = proxγfik
(
xk + γ∇fik(x̃

s)− γ∇F (x̃s)
)

choose ξs uniformly at random in {0, 1, · · · ℓ− 1}

x̃s+1 =
∑ℓ−1

k=0 δk,ξsx
k,

where δk,h is the Kronecker symbol.
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SVRP results

Theorem (PL case)
Suppose that

0 < γ <
1

2(2L− µ)
and ℓ >

1

µγ(1− 2γ(2L− µ))
.

Then
(∀s ∈ N) E

[
F
(
x̃s+1

)
− F∗

]
≤ qs

(
F (x0)− F∗

)
,

with q :=

(
1

µγ(1− 2Lγ)ℓ
+

2γ(L− µ)

1− 2Lγ

)
< 1.
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L-SVRP

Algorithm (L-SVRP)
Let γ > 0 and set x0 = u0 ∈ H. Then

for k = 0, 1, . . .
choose ik uniformly at random in [n]

xk+1 = proxγfik
(
xk + γ∇fik(u

k)− γ∇F (uk)
)

εk Bernoulli r.v. with P(εk = 1) = p ∈]0, 1]

uk+1 = (1− εk)uk + εkxk,
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L-SVRP results

Corollary (Convex case)
Let M ≥ 2

p and γ < 1
L(2+pM) . Then

(∀k ∈ N) E[F (x̄k)− F∗] ≤
dist(x0, argminF )2 + γ2ME[σ2

0 ]

2γk [1− γL(2 + pM)]
,

with x̄k = 1
k

∑k−1
t=0 xt.
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L-SVRP results

Corollary (PL case)
Let M > 2/p and γ < 1

L(2+pM) . Then

(∀k ∈ N) E[dist(xk, argminF )]2 ≤ qk
(
dist(x0, argminF )2 + γ2ME[σ2

0 ]
)
,

E[F (xk)− F∗] ≤
qkL

2

(
dist(x0, argminF )2 + γ2ME[σ2

0 ]
)
,

with 0 < q < 1.
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SAPA

Algorithm (SAPA)
Let γ > 0. Set x0 ∈ H and, ∀i ∈ [n], ϕ0

i = x0. Then

for k = 0, 1, . . .
choose ik uniformly at random in [n]

xk+1 = proxγfik
(
xk + γ∇fik(ϕ

k
ik
)− γ

n

∑n
i=1 ∇fi(ϕ

k
i )
)

∀ i ∈ [n] : ϕk+1
i = ϕk

i + δi,ik(x
k − ϕk

i ),

where δi,j is the Kronecker symbol.
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SAPA results

Corollary (Convex case)
Let M ≥ 2n and γ < 1

L(2+M/n) . Then

(∀k ∈ N) E[F (x̄k)− F∗] ≤
dist(x0, argminF )2 + γ2ME[σ2

0 ]

2γk [1− γL(2 +M/n)]
,

with x̄k = 1
k

∑k−1
t=0 xt.
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SAPA results

Corollary (PL case)
Let M > 2n and γ < 1

L(2+M/n) . Then

(∀k ∈ N) E[dist(xk, argminF )]2 ≤ qk
(
dist(x0, argminF )2 + γ2ME[σ2

0 ]
)
,

E[F (xk)− F∗] ≤
qkL

2

(
dist(x0, argminF )2 + γ2ME[σ2

0 ]
)
,

with 0 < q < 1.
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Related works

Algorithm Smooth + convex Smooth + SC Smooth + PL Non-smooth + SC
Defazio13 Point-Saga NA O(εk) NA O(1/k)

Khaled et al.14 L-SVRP NA O(εk) NA NA
Milzarek et al.15 SNSPP NA O(εk) NA NA
Traoré et al.16 Unified O(1/k) (not for SVRP) O(εk) O(εk) NA

Table: Comparison to related works.

13Defazio, “A simple practical accelerated method for finite sums”.
14Khaled et al., “Faster federated optimization under second-order similarity”.
15Milzarek et al., “A semismooth Newton stochastic proximal point algorithm with variance reduction”.
16Traoré, Apidopoulos, et al., “Variance reduction techniques for stochastic proximal point algorithms”.
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Experiments

Ordinary least squares (OLS):

minimize
x∈Rm

F (x) =
1

2n
∥Ax− b∥2 =

1

n

n∑
i=1

1

2
(⟨ai, x⟩ − bi)

2
,

where ai is the ith row of the matrix A ∈ Rn×m and bi ∈ R for all i ∈ [n]
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SAPA/SVRP/SPPA

Figure: SAPA (blue) and SVRP (green) compared to SPPA (orange).
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SAGA/SAPA

Figure: SAPA (in blue) compared to SAGA (in orange).
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SVRG/SVRP

Figure: SVRP (in blue) compared SVRG (in orange).
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Remarks on the results

▶ We only have results for the smooth case.

▶ For SVRP, no results for the convex case.

▶ We have derived results for SPPA from the generic algorithm.
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Conclusion

Asynchronous Forward-Backward Variance reduction for SPPA
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Conclusion

Asynchronous Forward-Backward

Summary
▶ considered with abstract probability and

coordinate-wise adaptive stepsize
▶ provided convergence of the iterates
▶ provided standard convergence rates for

convex and error bound cases
▶ results depend linearly on τ

Variance reduction for SPPA

Summary
▶ made a unified study
▶ proved standard rates for convex and PL

cases
▶ recovered proximal version of standard

gradient variance reduced algorithms
▶ empirical comparison
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Conclusion
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convex and error bound cases
▶ results depend linearly on τ

Future directions
▶ results for delay-wise adaptive stepsize
▶ considered coordinates dependent delay
▶ prove the tightest delay dependence

Variance reduction for SPPA

Summary
▶ made a unified study
▶ proved standard rates for convex and PL

cases
▶ recovered proximal version of standard

gradient variance reduced algorithms
▶ empirical comparison

Future directions
▶ convex case for SVRP
▶ non-smooth analysis
▶ Bregman and/or zeroth-order versions

Thank you for your attention!!
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