
Genuense Athenaeum

Cheik Traoré

LARGE-SCALE CONVEX OPTIMIZATION:
PARALLELIZATION AND VARIANCE REDUCTION

PhD thesis

Department of Mathematics
March 2024

University of Genoa
PhD Program in Mathematics and Applications

Mathematical Methods for Data Science Curriculum (8228)

Large-Scale Convex Optimization:
Parallelization and Variance Reduction

by

Cheik Traoré

Thesis submitted for the degree of Doctor of Philosophy (Cycle XXXVI)

on March 11, 2024

Silvia Villa, University of Genoa Thesis supervisor
Saverio Salzo, Sapienza University of Rome Thesis co-supervisor
Stefano Vigni, University of Genoa Head of the PhD program

Department of Mathematics (DIMA)

© March 2024

Cheik Traoré

All Rights Reserved

To my mom, my late
dad, and my late sisters.

vii

Abstract

Large-Scale Convex Optimization: Parallelization and Variance
Reduction

Cheik Traoré

In this work, we investigate two aspects of large-scale optimization for convex func-
tions defined on an infinite-dimensional separable Hilbert space: parallelized methods
and incremental methods. These methods are used to efficiently solve problems that arise
in data science, especially in machine learning and inverse problems.

In parallelized optimization methods, the computational load of running the algorithm
is distributed among several workers. For example, if the algorithm comprises a gradient
computation, one can give each worker a coordinate of the gradient to compute, and then
put everything back together. A parallelized algorithm is called synchronous if there is
a synchronization phase where local information of all workers are updated. It is called
asynchronous if there is no such phase. In practice, asynchronous implementations are
preferred to synchronous ones. However, their analysis has to account for delayed infor-
mation, which is modeled by a delay vector. In this document, we study an asynchronous
version of random block coordinate descent, where only one randomly selected coordi-
nate is used at each iteration. We consider a version in which the selection probability of
the coordinates is arbitrary, in contrast to what is done in the literature for asynchronous
algorithms. We also allow coordinate-wise stepsize rule. Under convexity assumption,
we prove weak convergence of the iterates and sublinear convergence rate. Assuming an
additional error bound condition, we prove a linear convergence rate and strong conver-
gence of the iterates. In both cases, the dependence on the delay vector is linear.

Incremental optimization methods are iterative algorithms used to minimize a function
defined as a finite sum of functions. The function is then minimized by using one sum-
mand at each iteration instead of the whole function. We are interested in the case where
the choice of the summand is random. This leads to stochastic algorithms such as stochas-
tic gradient descent (SGD) or stochastic proximal point algorithm (SPPA). While they are
cheaper to implement in terms of computation and memory than their deterministic coun-
terparts that use the entire function, stochastic methods suffer from a drop in convergence
rates. This drop is mainly due to the variance introduced by the stochasticity. Therefore,
variance reduction techniques have been used in the literature to successfully recover the
rates of deterministic algorithms. These techniques were first applied to stochastic gradi-
ent methods. In our work, we are, instead, concerned with the stochastic proximal point
algorithm (SPPA). This method has recently been studied and has been shown to be more
stable compared to stochastic gradient descent (SGD). Our work focuses on the applica-
tion of variance reduction methods to SPPA. In particular, we introduce a general variance
reduction scheme for SPPA. Many variance-reduced SPPA-based algorithms can be recov-
ered from this scheme, mimicking those that already exist for SGD (SVRG, SAGA, etc.). We
recover standard sublinear (respectively linear) convergence rates of the proximal point
algorithm (PPA) when the stepsize is constant and the function is convex (respectively

ix

x

convex plus satisfying the Polyak-Łojasiewicz condition).

Keywords. Convex optimization, asynchronous algorithms, randomized block-coordinate descent,
error bounds, stochastic quasi-Fejér sequences, forward-backward algorithm, convergence rates,
stochastic optimization, proximal point algorithm, variance reduction techniques, SVRG, SAGA.

Acknowledgements

First and foremost, I am grateful to Silvia Villa for offering me this fantastic opportunity
and for the direction of research I followed. I also thank her and Saverio Salzo for their
abundant and useful advice, and their great patience and comprehension throughout my
time as their student. Saverio, thanks for the time and efforts invested in collaborating
with us.

I would also like to thanks Radu Ioan Bo̧t and François Glineur for reviewing my thesis
and for their recommendations to improve it.

Then I thank all MalGa and DIMA (professors, students, administrative staffs, visitors,
and collaborators), for the great time I spent in the lab, at the department, on the football
pitch, and in the city of Genova. I would like to single out and wholeheartedly thanks
Giulia Casu and Nathalie Baxs for their tremendous help with the administrative duties
that I encountered during my PhD and beyond.

Last but not least, I acknowledge that my PhD work has received funding from the
European Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No 861137.

xi

Table of Contents

1 Introduction 1
1.1 General context and motivation . 1
1.2 Thesis outline and contributions . 3
1.3 Preliminaries . 4

1.3.1 Notations . 4
1.3.2 Elements of convex analysis . 5

2 Algorithmic background 13
2.1 Forward-backward algorithm and its asynchronous version 13

2.1.1 Forward-backward algorithm . 13
2.1.2 Asynchronous algorithms . 17

2.2 Stochastic algorithms and variance reduction 18
2.2.1 Stochastic Gradient Descent (SGD) 19
2.2.2 Variance reduction methods for SGD 22
2.2.3 Stochastic proximal point algorithm (SPPA) 24

3 Convergence of an Asynchronous Block-Coordinate Forward-Backward Algo-
rithm for Convex Composite Optimization 27
3.1 Introduction . 27

3.1.1 Related work . 28
3.1.2 Contributions . 29

3.2 Preliminaries . 30
3.2.1 Auxiliary lemmas . 31

3.3 Convergence analysis . 32
3.4 Linear convergence under error bound condition 36
3.5 Applications . 42

3.5.1 The Lasso problem . 42
3.5.2 Linear convergence of dual proximal gradient method 42

3.6 Experiments . 44
3.6.1 Speedup test . 45
3.6.2 Comparison with the synchronous version 46
3.6.3 Comparison with other asynchronous algorithms 46

3.7 Proofs of the auxiliary Lemmas in Section 3.2 50
3.8 Proofs of Section 3.3 . 52

4 Variance reduction techniques for stochastic proximal point algorithms 61
4.1 Introduction . 61
4.2 Algorithm and assumptions . 63

4.2.1 Algorithm . 63
4.2.2 Assumptions . 64

4.3 Main results . 65
4.4 Derivation of stochastic proximal point type algorithms 67

xiii

xiv TABLE OF CONTENTS

4.4.1 Stochastic Proximal Point Algorithm 67
4.4.2 Stochastic Variance Reduced Proximal point algorithm 69
4.4.3 Loopless SVRP . 72
4.4.4 Stochastic Average Proximal Algorithm 73

4.5 Experiments . 74
4.5.1 Comparing SAPA and SVRP to SPPA 75
4.5.2 Comparing SAPA to SAGA . 76
4.5.3 Comparing SVRP to SVRG . 77

4.6 Additional proofs . 79
4.6.1 Proofs of Section 3 . 79
4.6.2 Proofs of Section 4 . 81

5 Conclusion and perspectives 85
5.1 Asynchronous algorithms . 85
5.2 Variance reduction techniques . 86

Bibliography 91

CHAPTER 1

Introduction

1.1 General context and motivation

The impact that data science has on everyday life is incommensurable and continuously
expanding. Imaging, language translation, self-driving cars, ChatGPT are some examples
among the applications of this discipline. One of the major tools in data science is opti-
mization, more precisely, numerical optimization. For example, in machine learning, the
core of most “intelligent” systems, the training phase consists of minimizing a loss func-
tion that measures the discrepancy between a predicted value and the true value [95]. To
achieve all the aforementioned prowesses, a huge amount of data is required more often
than not. This poses many challenges to the field of optimization. Indeed, one expects to
minimize a function not only as quickly and accurately1, as possible, but also efficiently
both in terms of computation and memory. The concepts of speed, accuracy and efficiency
are of paramount importance in today’s optimization theory and are at the core of various
techniques used. The primary focus of this piece of work is on those aspects, specifically
on the efficient implementation of algorithms for solving large-scale problems.

In continuous optimization, the iterative algorithms used to minimize a function need
a direction in which to move at each iteration. This requires some idea of the variation
of the objective function to be minimized. If the function has a Gâteaux differential or an
appropriate generalized differential, the first variation is an excellent candidate. Indeed,
the gradient captures the local variational behavior of a function at a point: it is the
direction of maximum increase at any point where it is defined. Algorithms that use the
derivative are called first-order methods. Consequently, those that use a higher-order
derivative are called higher-order methods. Because of the cost of computing higher-
order derivatives, first-order methods are the most popular methods even though they are
sometimes slower.

The first-order methods that we are concerned with are the (sub)gradient descent
(GD) [78]

(∀k ∈ N) xk+1 = xk − γkv
k, (GD)

and the proximal point algorithm (PPA), first introduced in [73]

(∀k ∈ N) xk+1 = xk − γkv
k+1, (PPA)

where vk is the gradient or a subgradient of F at xk for all k ∈ N. The computation of vk

can be very expensive or impossible to perform. There are few ways to go around those
difficulties. In this document, we shall concentrate our attention on two of them.

1By accurately, we mean closely enough to a (local) minimum.

1

2 CHAPTER 1

Parallelization. A solution, when computation is expensive, is to distribute the load among
many workers (machines, cores, computers, etc.), i.e., to parallelize the system. To achieve
this, the algorithm should support parallelization. For instance, the gradient in (GD) can
be divided into blocks of coordinates; each worker computes a block, and everything is
then assembled. In this case, you should have as many workers as blocks. A suitable vari-
ant of GD for parallelization is therefore coordinate descent, defined for a differentiable
function F : Rd → R, by

(∀k ∈ N) xk+1
ik

= xkik − γkik∇ikF (x
k), (CD)

where ik ∈ {1, 2, · · · , d}, ∇ikF (x
k) is the ikth partial derivative of F at xk and the blocks

are composed of one coordinate. Generally, there are two approaches to parallelization.
First, it can be done synchronously. In such a system, the computation workload and
the data are spread across the workers. Then there are synchronization steps where all
the local information is consolidated to make progress [2, 35, 38, 43]. For example, in
the case of CD and with d machines given different coordinates, if the synchronization
is done at each iteration, it will correspond to GD with the computation of the gradient
spread across the machines. The synchronization steps introduce additional overhead, and
during those phases, the algorithm is as slow as the slowest worker because it has to wait
for all the workers to provide their local information. This is avoided by performing all
steps asynchronously (no synchronization phase), known as asynchronous parallelization.
In an asynchronous system, workers can progress freely without waiting for each other in
a synchronization phase.

In our work, we focus on asynchronous algorithms. We specifically investigate the
convergence properties of a version of coordinate descent CD with asynchronous paral-
lelization, defined here AsyncBlockProxGrad. We will dive deeper into this later in this
document.

Approximation of the (sub)gradient. A second solution and an efficient alternative is to
replace the (sub)gradient with a sufficiently good approximation that is less expensive to
compute or store. This approximation should be good enough in the sense that speed and
accuracy are not significantly compromised. Various methods can be employed to approx-
imate the (sub)gradient depending on the property or structure of the function F . When
only the function values are available, a finite difference approximation can be used, as
seen in some zeroth-order optimization methods [79]. Another popular option is to use
a stochastic estimator to approximate the true gradient. This is common in the realm of
stochastic approximation [89], where the function to minimize is the expectation of a ran-
dom function. In this situation, the gradient of a realization of the random function is used
instead of the gradient of the expected value. A widespread example in machine learning,
which we address later in this work, is empirical risk minimization obtained by using an
empirical expectation. Unfortunately, when compared to their deterministic counterparts,
stochastic methods, such as Stochastic Gradient Descent (SGD) in the differentiable case
and Stochastic Proximal Point Algorithm (SPPA), lag in terms of accuracy when a constant
stepsize is used. That is to say that, assuming convexity, they converge to a ball around
the minimum rather than the minimum itself. This behavior is primarily attributed to the
variance introduced by the stochasticity; for more details, see point (i) of Remark 2.15. To
have them to converge to the minimum, a vanishing stepsize is needed to cancel out the
variance. But, in that case, when it comes to convergence rate (speed), stochastic methods
lose to the deterministic ones. That is due to the fact that the latter methods do not need a
vanishing stepsize for convergence. A vanishing stepsize always slows down algorithms, in
this instance stochastic algorithms [12]. In a subsequent section, we will explore various
techniques that have been successfully introduced to recover both the convergence rate

1.2. THESIS OUTLINE AND CONTRIBUTIONS 3

and accuracy by algorithmically reducing the variance instead of the vanishing stepsize
trick.

The contribution of our document on that topic is to study these variance reduction
techniques for the stochastic version, SPPA, of PPA. To be more specific, we introduced
a unified way of studying several variance reduction techniques for SPPA mirroring what
has been done for SGD [45].

1.2 Thesis outline and contributions

This thesis revolves around two aspects of large-scale optimization: parallelization and
variance reduction which will be treated separately in two different chapters, namely
Chapter 3 and Chapter 4 respectively. Our study is carried out in infinite dimensional and
separable real Hilbert spaces, unless stated otherwise. The following is the outline of the
rest of the thesis.

Chapter 2: This chapter’s objective is to recall some background information that is rel-
evant to the next two chapters. We first explain the forward-backward algorithm and
its asynchronous implementation. Then, we briefly present stochastic gradient descent
SGD and compare it to its deterministic counterpart GD. Subsequently, we show the main
variance reduction techniques introduced in the literature to make SGD “as fast as” GD.

Chapter 3: Associated with the publication:

TRAORÉ, C., SALZO, S., AND VILLA, S. (2023). “Convergence of an Asynchronous
Block-Coordinate Forward-Backward Algorithm for Convex Composite Optimization”.

Computational Optimization and Applications, 86(1), 303-344.

In this chapter, we focus on an asynchronous implementation of the random coordi-
nate forward-backward algorithm. In contrast to the literature of asynchronous forward-
backward algorithms, we use an arbitrary probability of coordinates selection, not nec-
essarily uniform. We also introduce a coordinate-dependent stepsize rule. Considering
convex and (smooth + nonsmooth) composite functions, we

• prove almost sure (a.s.) weak convergence of the iterates to a random variable
taking values in the set of minimizers.

• provide a convergence rate of o(1/k) in expectation.

• have the state-of-the-art dependence on the delay, which is linear for both stepsizes
and convergence constants.

Assuming an error bound condition on top of the previous assumptions, we

• prove almost sure (a.s.) strong convergence of the iterates to a random variable
taking values in the set of minimizers.

• prove, in expectation, a linear convergence rate O(εk) with 0 < ε < 1.

Chapter 4: Based on the following submitted preprint:

TRAORÉ, C., APIDOPOULOS, V., SALZO, S., AND VILLA, S. (2023). “Variance reduction
techniques for stochastic proximal point algorithms”. arXiv preprint arXiv:2308.09310.

In this chapter, we perform a unified study of variance reduction techniques for stochastic
proximal point algorithms (SPPA).

4 CHAPTER 1

• First, we define a generic variance-reduced SPPA. For convex and smooth functions,
a sublinear convergence rate is provided for this generic algorithm. For convex and
smooth functions that satisfy the Polyak-Łojasiewicz condition, we prove a linear
convergence rate for it.

• When specified, this generic algorithm recovers, along with their convergence rates,
proximal variance-reduced algorithms such as SVRP, L-SVRP, and SAPA, which are
proximal versions of SVRG, L-SVRG [61], and SAGA, respectively.

While these variance-reduced algorithms for SPPA have been individually studied in the
literature with the stronger assumption of strong convexity, non-constant stepsizes, or, in
the case of SAPA, a slight variation of the algorithm [30, 56, 74], our work represents the
first unified study of variance reduction techniques for SPPA. Our generic analysis might
be specialized to even more examples than the ones cited above.

Paper not included in this thesis:

TRAORÉ, C., AND PAUWELS, E. (2021). Sequential convergence of AdaGrad algorithm for
smooth convex optimization. Operations Research Letters, 49(4), 452-458.

1.3 Preliminaries

We assume that the reader is familiar with basics of point topology and differential calcu-
lus. If not, he or she can refer to [8] for additional insights.

We first introduce the notations and recall a few basic notions about convex analysis
that will be needed throughout this document.

1.3.1 Notations

We denote by N the set of natural numbers (including zero), R+ = [0,+∞[and R++ =
]0,+∞[. For every integer ℓ ≥ 1 we define [ℓ] = {1, . . . , ℓ}. H always denotes an arbitrary
separable real Hilbert space endowed with a scalar product ⟨·, ·⟩ and its induced norm
∥ · ∥. H is, instead, the direct sum of m separable real Hilbert spaces (Hi)1≤i≤m, i.e.
H =

⊕m
i=1Hi. For all i ∈ [m], we denote indifferently the scalar products of H and Hi by

⟨·, ·⟩ and:

(∀x = (x1, · · · , xm), y = (y1, · · · , ym) ∈ H) ⟨x, y⟩ =
m∑
i=1

⟨xi, yi⟩.

∥ · ∥ and | · | represent the norms associated to their scalar product in H and in any
of Hi respectively. We also consider the canonical embedding, for all i = 1, 2, · · · ,m,
Ji : Hi → H, xi 7→ (0, · · · , 0, xi, 0, · · · , 0), with xi in the ith position.

The default font is used for random variables while sans serif font is used for their
realizations or deterministic variables. The probability space underlying random variables
is denoted by (Ω,A,P). For every random variable x, E[x] denotes its expectation, while
if F ⊂ A is a sub σ-algebra; we denote by E[x |F] the conditional expectation of x given
F. Also, σ(x) represents the σ-algebra generated by the random variable x.

Let (αi)1≤i≤m ∈ Rm++. The direct sum operator A =
⊕m

i=1 αiIdi, where Idi is the
identity operator on Hi, is

A : H → H

x = (xi)1≤i≤m 7→ (αixi)1≤i≤m

1.3. PRELIMINARIES 5

This operator defines an equivalent scalar product on H as follows

(∀ x ∈ H)(∀ y ∈ H) ⟨x, y⟩A = ⟨Ax, y⟩ =
m∑
i=1

αi⟨xi, yi⟩,

which gives the norm ∥x∥2A =
∑m

i=1 αi|xi|2. We let

V =
m⊕
i=1

piIdi, Γ−1 =
m⊕
i=1

1

γi
Idi, and W =

m⊕
i=1

1

γipi
Idi,

where for all i ∈ [m], γi > 0 and 0 < pi < 1. We set pmax := max1≤i≤m pi and pmin :=
min1≤i≤m pi.

Let φ : H →]−∞,+∞] be an extended real valued function. Arithmetic rules are ex-
tended to −∞ and +∞ as in [8]. The (effective) domain of φ is domφ := {x ∈ H |φ(x) <
+∞} and the set of minimizers of φ is argminφ := {x ∈ H |φ(x) = inf φ}. If inf φ is
finite, it is represented by φ∗. When φ is differentiable ∇φ denotes the gradient of φ. The
notation x∗ means x is a minimizer of φ.

Now let φ : H →]−∞,+∞]. For all u, x ∈ H and any symmetric positive definite
operator A, we have ⟨∇Aφ(x),u⟩A = ⟨∇φ(x),u⟩, where ∇A denotes the gradient operator
in the norm ∥·∥A. Indeed

lim
t→0

φ(x+ tu)− φ(x)

t
= ⟨∇φ(x),u⟩ = ⟨∇Aφ(x),u⟩A.

This is true because the limit is independent of the norm on H.
If S ⊂ H is convex, closed and non empty, and x ∈ H, we set distA(x, S) = infz∈S∥x−z∥A.

The projection of x onto S is denoted by PS(x) := infz∈S∥x−z∥ and PA
S (x) := infz∈S∥x−z∥A.

∀S ⊂ H, int(S) means interior of S.
In this work, ℓ1 represents the space of real summable sequences and ℓ2 the space of

real sequences which are square summable.
The strong convergence (respectively weak convergence) of a sequence (xn)n∈N to x is

represented by xn
n−−→ x (respectively xn

n−−⇀ x.).

1.3.2 Elements of convex analysis
In this section, we merely present the convex analysis tools that are used in this document.
The interested reader can look at [8, 92] for additional results and proofs. Unless stated
otherwise, φ : H →]−∞,+∞] will always represent an extended real valued function.

We start by defining the fundamental geometrical property of convexity for sets.

Definition 1.1: A subset C ⊂ H is said to be convex if

(∀λ ∈ [0, 1]) (∀ x, y ∈ C) λx+ (1− λ)y ∈ C.

A set is convex if it contains the line segment joining any two points belonging to it.
Below are few examples of convex sets; see Figure 1.1 for an illustration.

Example 1.2:

(i) The empty set, H, and the singletons ({x}, x ∈ H) are convex.

(ii) For all (x0, r) ∈ H × R, B(x0, r) := {x : ∥x − x0∥ < r} and Bc(x0, r) := {x :
∥x− x0∥ ≤ r} are convex.

The following one to one connection between functions and sets makes it possible to
have also a notion of convexity for functions.

6 CHAPTER 1

x1

x2

Convex set

x3 x4

Nonconvex set

Figure 1.1: A convex set on the left and a nonconvex set on the right.

Definition 1.3: The epigraph of φ, denoted epiφ, is

epiφ := {(x, t) ∈ H× R : φ(x) ≤ t} .

See Figure 1.2 for an illustration.

epi φ

domφ

x

φ(x)

Figure 1.2: Representation of the epigraph of φ.

A convex function is then defined by:

Definition 1.4 (Convex functions): The function φ is convex if epiφ is a convex set
in H× R. See Figure 1.3 for an illustration.

This can be equivalently formulated as follows.

1.3. PRELIMINARIES 7

dom f

x

f(x)

domφ

x

φ(x)

Figure 1.3: A nonconvex function f on the left and a convex function φ on the right.

Proposition 1.5

The following statements are equivalent:

(i) The function φ is convex.

(ii) For all x, y ∈ domφ and λ ∈ [0, 1], the secant inequality

φ(λx+ (1− λ)y) ≤ λφ(x) + (1− λ)φ(y) (1.3.1)

holds true; see Figure 1.4.

Assuming domφ ̸= ∅ is convex and open, and φ is differentiable on domφ, the previ-
ous two statements are equivalent to the following one

(∀ x, y ∈ domφ) φ(y) ≥ φ(x) + ⟨∇φ(x), y − x⟩. (1.3.2)

Definition 1.6: Suppose that there exists x ∈ domφ. Let µ ≥ 0. We say that φ
is µ−strongly convex if φ − µ

2∥ · ∥2 is convex or equivalently, for all λ ∈ [0, 1] and
x, y ∈ domφ,

φ(λx+ (1− λ)y) ≤ λφ(x) + (1− λ)φ(y)− λ(1− λ)
µ

2
∥x− y∥2.

Definition 1.7:

(i) φ is proper if domφ ̸= ∅, i.e. there exists x ∈ H such that φ(x) < +∞.

(ii) φ is lower semicontinuous, abbreviated as l.s.c., if for all (xn)n∈N ⊂ H,
lim inf

n
φ(xn) ≥ φ(x) whenever xn

n−−→ x.

(iii) φ is weakly lower semicontinuous, if for all (xn)n∈N ⊂ H, lim inf
n

φ(xn) ≥ φ(x)

whenever xn
n−−⇀ x.

8 CHAPTER 1

H

R

φepi φ

φ(x)

x

φ(y)

y

λφ(x) + (1− λ)φ(y)

φ(λx+ (1− λ)y)

λx+ (1− λ)y

Figure 1.4: Secant inequality.

(iv) Let φ be proper. A global minimizer, or simply a minimizer, of φ is a point
x∗ ∈ H such that

(∀ x ∈ H) φ(x∗) ≤ φ(x);

a local minimizer of φ is a point x∗ ∈ H such that

(∃ r > 0)(∀ x ∈ B(x∗, r)) φ(x∗) ≤ φ(x).

Thanks to the next proposition, for convex function, we will only talk about lower
semicontinuity.

Proposition 1.8

Let φ be convex. Then φ is weakly lower semicontinuous (w.l.s.c.) if and only if it is
lower semicontinuous (l.s.c.).

We now give some definitions related to the notion of generalized gradient for convex
functions.

Definition 1.9:

(i) Let φ be proper and convex, and x ∈ domφ. u ∈ H is called a subgradient of φ
at x if

(∀ y ∈ H) φ(y) ≥ φ(x) + ⟨u, y − x⟩, (1.3.3)

and the subdifferential ∂φ(x) of φ at x is the set {u ∈ H : (1.3.3) holds}. The
function φ is subdifferentiable at x if ∂φ(x) ̸= ∅, i.e. if x ∈ dom ∂φ. Whenever
x /∈ domφ, we set ∂φ(x) = ∅.

(ii) x is a critical point of φ if 0 ∈ ∂φ(x).

1.3. PRELIMINARIES 9

Proposition 1.10

Let φ be proper and convex.

(i) The domain of the subdifferential of φ is dense in the domain of φ if φ is l.s.c.

(ii) Let ψ : H →]−∞,+∞] be convex and proper. If ψ is (Gâteaux) differentiable at
x ∈ int(domψ), then ∂ψ(x) = {∇ψ(x)}.

(iii) Assume (ii) with the same x. Then ∂(ψ(x) + φ(x)) = ∇ψ(x) + ∂φ(x).

(iv) If φ is l.s.c., the graph of the subdifferential of φ, Graph ∂φ := {(x, u) ∈ H ×
H : u ∈ ∂φ(x)}, is closed in Hweak × Hstrong.

We have next an important property of convex functions that makes them extremely
interesting in optimization.

Proposition 1.11

Let φ be proper and convex and let x∗ ∈ domφ. These statements are equivalent

(i) x∗ is a local minimizer of φ.

(ii) x∗ is a (global) minimizer of φ.

(iii) x∗ is a critical point of φ.

Next, we will give sufficient conditions for a function to have a minimizer.

Definition 1.12: Let φ be proper. φ is said coercive if

lim
∥x∥→+∞

φ(x) = +∞,

which is equivalent to saying that, for every λ ∈ R, {x ∈ H : φ(x) ≤ λ} is bounded.

Proposition 1.13

Let φ be proper, weakly lower semicontinuous, and coercive. Then φ admits a mini-
mizer.

Corollary 1.14: Let φ be proper, lower semicontinuous, and strongly convex. Then φ
admits a unique minimizer.

Before moving forward, we introduce a notion that is not derived from convexity but
will be needed in the thesis.

Definition 1.15: The function ψ : H → R is L−smooth if it is differentiable on H =
domψ and its gradient is L−Lipschitz on H for L ≥ 0, i.e.

(∀ x, y ∈ H) ∥∇ψ(x)−∇ψ(y)∥ ≤ L∥x− y∥.

Then we have the celebrated Descent Lemma.

10 CHAPTER 1

Lemma 1.16 (Descent Lemma): Let ψ : H → R be L−smooth. Then for all x, y ∈ H,

ψ(y)− ψ(x)− ⟨∇ψ(x), y − x⟩ ≤ L

2
∥x− y∥2.

Finally, we introduce the notion of duality.

Definition 1.17: The Fenchel conjugate φ∗ : H → [−∞,+∞] of φ is the function

H ∋ u 7→ sup
x∈H

⟨u, x⟩ − φ(x).

See Figure 1.5 for an illustration.

H

R

φ(x)epi φ

⟨u, x⟩ − φ∗(u)

(u,−1)

−φ∗(u)

Figure 1.5: An explanation of the conjugate φ∗ of φ.

Example 1.18:

(i) Let φ(x) = ex. Then

φ∗(u) =

u log u− u if u > 0

0 if u = 0

+∞ if u < 0

(ii) For every u ∈ H,(
1

2
∥ · ∥2

)∗
(u) = ⟨u, u⟩ − 1

2
∥u∥2 = 1

2
∥u∥2.

1.3. PRELIMINARIES 11

Proposition 1.19

Let φ be proper. Then the following hold.

(i) φ∗ : H →]−∞,+∞] is convex and lower semicontinuous.

(ii) Let µ > 0. Suppose that φ is convex and l.s.c. Then φ is µ−strongly convex if
and only if φ∗ is (1/µ)−smooth.

CHAPTER 2

Algorithmic background

In this chapter, we introduce some fundamental algorithms and techniques that are useful
for the rest of the document. Throughout the chapter, F : H −→] −∞,+∞] is supposed
to be proper and bounded from below; so F∗ := inf F > −∞.

Remark 2.1: For disclaimer, the rates of convergence of the different algorithms pre-
sented in this chapter are not necessarily the tightest ones in terms of the constants
involved. What is relevant to the rest of the document and the goal of this chapter
is to present and compare the order of the rates of convergence of those algorithms
rather than the tightest constants of said rates. The interested reader can look in
these references [100, 101, 102, 103], in most of which Performance Estimation
technique is used.

We give one last definition before diving into the chapter.

Definition 2.2: A rate of convergence is called ergodic if it is given in terms of an
average of the iterates generated by the algorithm, e.g. x̄k =

∑k−1
t=0 αtx

t with k ∈ N ,∑k−1
t=0 αt = 1 and xt is the iterate generated at iteration t.

2.1 Forward-backward algorithm and its asynchronous
version

2.1.1 Forward-backward algorithm

When F : H −→]−∞,+∞] is convex, proper, l.s.c and differentiable on domF , assumed
open, the GD iteration can be rewritten equivalently as

(∀k ∈ N) xk+1 = argmin
x

F (xk) + ⟨∇F (xk), x− xk⟩+ 1

2γk
∥x− xk∥2. (GD)

GD is well-defined since F is convex, proper and lower semicontinuous. In that case the
function y 7→ F (x) + ⟨∇F (x), y − x⟩ + 1

2γ ∥y − x∥2 is strongly convex, proper and lower
semicontinuous. So the minimizer exists and is unique; see Corollary 1.14. Equation GD
shows that, at each iteration k, we are minimizing the first order Taylor approximation of
F at xk with the condition that the minimizer xk+1 is close to xk. This latter condition is
imposed by the regularization term 1

2γk
∥x − xk∥2 and the stepsize γk controls how close

xk+1 is to xk.
The PPA iteration can also be written equivalently, even (and especially) if F is not

13

14 CHAPTER 2

differentiable, as

(∀k ∈ N) xk+1 = proxγkF (x
k) := argmin

x
F (x) +

1

2γk
∥x− xk∥2. (PPA)

For the same reason as GD, PPA is well-defined since F is convex, proper and lower semi-
continuous. In the case of PPA we are trying to find the minimizer xk+1 of F in the vicinity
of xk, instead of the minimizer of its Taylor approximation like in GD.

Remark 2.3: Let A be a symmetric positive definite operator. We denote by proxAγkF
the proximal operator of F in the norm ∥ · ∥A.

Remark 2.4: Computing the proximity operator proxγF of a function F is in general
difficult except for examples like the ℓ1 norm x 7→ ∥x∥1. Actually knowing how to
compute the proximity operator of a function equates to knowing how to minimize
that function. We just have to make γ tends to infinity to get the minimizer.
However, when the computation of the proximity operator is tractable and the func-
tion is nonsmooth, PPA is preferable compared to GD with subgradients. Indeed,
their convergence rates for the function values are O(1/k) with constant stepsize
and ergodic O(1/

√
k) with vanishing stepsize respectively, for convex, proper and

semicontinuous functions; see Theorem 2.5 for PPA and [87] for GD. This conver-
gence property of PPA is very useful in composite or structured optimization, an
example is given later in this section.

In this section, we will only present convergence rates for PPA. For GD, see Theorem
2.13 in Section 2.2.1.

Theorem 2.5: PPA rates [49, 92]

Let F be proper, convex and lower semicontinuous. Let 0 < γk = γ for every k ∈ N.

(i) Suppose that argminF ̸= ∅. Then ∀ k ∈ N,

F (xk)− F∗ ≤
dist

(
x0, argminF

)2
2γ

1

k
.

(ii) If F is µ−strongly convex with µ > 0, let {x∗} = argminF . Then ∀ k ∈ N,

∥xk − x∗∥ ≤
(

1

1 + γµ

)k
∥x0 − x∗∥.

Remark 2.6: Now suppose that F is smooth and consider the following gradient flow

ẋ(t) = −∇F (x(t)).
The forward Euler discretization gives

xk+1 − xk
γ

= −∇F (xk),

which is exactly GD. In the same way, PPA is obtained by the following backward
Euler discretization

xk+1 − xk
γ

= −∇F (xk+1).

Those denominations explain why the next algorithm we are going to present is
called forward-backward.

2.1. FORWARD-BACKWARD ALGORITHM AND ITS ASYNCHRONOUS VERSION 15

Vanilla forward-backward algorithm

Sometimes, especially in data science, F is a composite function, i.e. F = f + g. For
example in machine learning, the goal is to minimize a loss function f ; but to prevent the
model to overfit, a regularization term g is added to the loss. In this case, the problem
considered is

minimize
x∈H

F (x) = f(x) + g(x).

In general F is not smooth. But sometimes, f : H −→ R is smooth and g : H −→
] − ∞,+∞], even though nonsmooth, has an easy-to-compute proximity operator. In-
stead of applying directly PPA to F , which can be difficult, we can take advantage of the
smoothness of f and the fact that the proximity operator of g is easy to compute. So we
split the algorithm by doing GD on f and PPA on g, hence the name splitting method. This
gives the forward-backward (or proximal gradient descent) algorithm.

Algorithm 2.1 (Forward-Backward):
Let x0 = x0 ∈ H.

for k = 0, 1, . . .⌊
xk+1 = argminx∈H f(x

k) + ⟨∇f(xk), x− xk⟩+ g(x) + 1
2γk

∥x− xk∥2

= proxγkgk
(
xk − γk∇f(xk)

)
(ProxGrad)

Example 2.7: An example of a composite minimization problem is the constrained
minimization over a closed convex set C ∈ H

minimize
x∈C

f(x),

which can be written as

minimize
x∈H

F (x) = f(x) + g(x),

where

g(x) = ιC(x)
def
=

{
0 x ∈ C

+∞ x /∈ C
.

In this particular example, the proximity operator of g is the projection onto C. The
forward-backward algorithm applied to it is then called in the literature projected gradient
descent.

Theorem 2.8: ProxGrad rates [92]

Let f : H → R an L−smooth convex function with L > 0, and g a proper, convex and
lower semicontinuous function. Let 0 < γk = γ < 2/L and

(
xk
)
k∈N be generated by

Algorithm ProxGrad. Then the following statements hold

(i) Suppose that argminF ̸= ∅. Then

F (xk+1)− F∗ = o(1/(k + 1)) and, for all k ∈ N,

F (xk+1)− F∗ ≤
dist

(
x0, argminF

)2
k + 1

×

{
1
2γ if γ ≤ 1/L
L
2

1
2−γL if 1/L < γ < 2/L.

16 CHAPTER 2

(ii) Suppose there exists µf > 0, µg ≥ 0 such that f is µf−strongly convex and g is
µg−strongly convex. Let {x∗} = argminF , and 0 < γk = γ < 2

L+µf
. Then

(∀ k ∈ N) ∥xk − x∗∥2 ≤
(

1

1 + γµg

)(
1−

2γµfL

L+ µf

)k
∥x0 − x∗∥2.

(Random) Block-coordinate forward-backward algorithm

It can happen that g has more structure allowing for the more efficient block-coordinate
proximal gradient descent. Let H =

⊕m
i=1Hi. In addition, we have that g is separable, i.e.

g(x) :=
∑m

i=1 gi(xi) for all x ∈ H. In that case we want to solve the following composite
problem

minimize
x∈H

F (x) := f(x) + g(x), g(x) :=
m∑
i=1

gi(xi). (2.1.1)

The (random) block-coordinate forward-backward algorithm to solve Problem 2.1.1 is

Algorithm 2.2 (Block-coordinate forward-backward):
Let x0 = x0 ∈ H.

for k = 0, 1, . . .
Choose ik (randomly) in [m]. Then
for i = 1, . . . ,m⌊
xk+1
i =

{
proxγkgi

(
xki − γk∇if(x

k)
)

if i = ik

xki if i ̸= ik,

(BlockProxGrad)

Example 2.9: An example of this type of problem is the Lasso problem. Given A ∈
Rn×m and b ∈ Rn, one wants to solve the problem

minimize
x∈Rm

1

2
∥Ax− b∥22 + λ∥x∥1 (λ > 0) . (2.1.2)

It is obvious that the Lasso problem corresponds to the template explained above
with f(x) = (1/2)∥Ax− b∥22, g(x) = λ∥x∥1 and gi(xi) = λ|xi|. The proximity operator
of xi 7→ λ|xi|, for all i ∈ [m], is called the soft thresholding operator

proxλ|·|(xi) =

xi − λ if xi > λ

0 if |xi| ≤ λ

xi + λ if xi < −λ
.

The proximity operator of x 7→ λ∥x∥1 is a vector in Rm with each component i given
by proxλ|·|(xi).

Theorem 2.10: BlockProxGrad rates [70, 91]

Let, ∀ i ∈ [m], fi be convex and L−smooth and, gi be proper, convex and lower
semicontinuous. ∀ k ∈ N, ik is chosen uniformly at random. Let 0 < γk = γ < 2/L
and (xk)k∈N be generated by BlockProxGrad.

2.1. FORWARD-BACKWARD ALGORITHM AND ITS ASYNCHRONOUS VERSION 17

(i) Suppose that argminF ̸= ∅. Then, for all k ∈ N, E[F (xk)]− F∗ = o(1/k) and

E[F (xk)]−F∗ ≤

[
dist

(
x0, argminF

)2
2γ

+

(
max

{
1, (2− γL)−1

}
− 1

m

)(
F (x0)− F∗

)] m
k

(ii) Let L > 0. If there exists µf , µg ≥ 0 such that f is µf−strongly convex and g is
µg−strongly convex with µf +µg > 0 and 0 < γk = γ = 1/L, then, for all k ∈ N,

E[F (xk)]− F∗ ≤
(
1−

2(µf + µg)

m(1 + µf + 2µg)

)k
×
(
L(1 + µg)

2
dist

(
x0, argminF

)2
+ F (x0)− F∗

)
Thanks to its structure where updates are done coordinate-wise, BlockProxGrad allows

for parallelization. We will explain next how this can be performed asynchronously.

2.1.2 Asynchronous algorithms

Mathematical modeling

In this section we discuss an example of an asynchronous parallel computational model,
occurring in shared-memory system architectures, which can be covered by the proposed
algorithm in Chapter 3. Consider a situation where we have a machine with multiple
cores and the algorithm makes updates coordinate-wise. All the cores have access to
a shared data x = (x1, . . . , xm) and each core updates a block-coordinate xi, i ∈ [m],
asynchronously without waiting for the others. The iteration’s counter k is increased any
time a component of x is updated. The value of the common data after k updates is written
xk. When a core is given a coordinate to update, it has to read from the shared memory
and compute a partial gradient. While performing these two operations, the data x may
have been updated by other cores. So, when the core is updating its assigned coordinate
at iteration k, the gradient might no longer be up-to-date. This phenomenon is modelled
mathematically by using a delay vector dk and using the partial gradient at xk−dk for the
update as in Algorithm 3.1. This is illustrated in Figure 2.1. Each component of the delay
vector reflects how many times the data x have been updated since the core has read
this particular coordinate from the shared memory. Note that different delays among the
coordinates may arise since the shared data may be updated during the reading phase, so
that the partial gradient ultimately is computed at a point which may not be consistent
with any past instance of the shared data. This situation is called inconsistent read [13]
and, in practice, allows a reading phase without any lock; see Figure 2.2. By contrast,
in a consistent read model [68, 88], a lock is put during the reading phase and the delay
originates only while computing the partial gradient. The delay is the same for all the
block-coordinates, so that the value read by any core is a past instance of the shared data.

Asynchronous forward-backward algorithm

Under the consideration of the previous paragraph, the asynchronous version of Block-
ProxGrad is given by the following algorithm

18 CHAPTER 2

𝑋! = (𝑥"
!, 𝑥#

!, 𝑥$
!)

M1 M2

𝑥!" 𝑥!"

𝑥!! = 𝑎𝑙𝑔𝑜 𝑥!", ∇!𝑓(𝑋")
𝑋! ← 𝑋"

𝑥!# = 𝑎𝑙𝑔𝑜 𝑥!$, ∇!𝑓(𝑋")
∇!𝑓 𝑋" = ∇!𝑓 𝑋$%$ ≠ ∇!𝑓 𝑋$

𝑋# ← 𝑋$

k=0

k=1

M3

𝑥$$ = 𝑎𝑙𝑔𝑜 𝑥$!, ∇$𝑓(𝑋")
∇$𝑓 𝑋" = ∇$𝑓 𝑋!%! ≠ ∇$𝑓 𝑋!

𝑋$ ← 𝑋!

k=2

𝑥$"

Figure 2.1: Delay representation. In this case we have 3 machines (M1, M2, M3) and
a shared data X0 at initialization. M1 and M3 have been assigned the same coordinate
to update. M1 is faster to do is local partial gradient computation. So it makes the first
update and counter move to 1. When M2 is ready to make its update at iteration 1, it has
the partial gradient at 0 instead of 1. So it has a delay of 1. The counter moves to 2 after
M2 makes its update. And M3 when doing its update has a delay of 2 because its partial
gradient is still at 0.

Algorithm 2.3:
Let x0 = x0 ∈ H.

for k = 0, 1, . . .
Choose ik (randomly) in [m]. Then
for i = 1, . . . ,m⌊
xk+1
i =

{
proxγigi

(
xki − γi∇if(x

k−dk)
)

if i = ik

xki if i ̸= ik,

(AsyncBlockProxGrad)

where xk−dk = (x
k−dk1
1 , . . . , x

k−dkm
m). This delay vector allows for an inconsistent read.

The convergence properties of AsyncBlockProxGrad will be investigated in Chapter 3.

2.2 Stochastic algorithms and variance reduction

The objective is, often in application, to solve the following finite-sum optimization prob-
lem

minimize
x∈H

F (x) =
1

n

n∑
i=1

fi(x), (2.2.1)

where H is a separable Hilbert space and for all i ∈ {1, 2, · · · , n}, fi : H → R.
Several problems can be expressed as in (2.2.1). The most popular example is the

Empirical Risk Minimization (ERM) problem in machine learning [97, Section 2.2]. In

2.2. STOCHASTIC ALGORITHMS AND VARIANCE REDUCTION 19

𝑥!" 𝑥#" 𝑥$"M1 reading

M2 updating

M2 updating

M1 reading

Shared data
representation

Data read by M1
(local)

M1 reading

k=0

k=2

k=4

k=4

M3 updating

M3 updating

𝑥!" 𝑥#" 𝑥$"

𝑥!! 𝑥#! 𝑥$!

𝑥!"

𝑥!"k=1

𝑥!"

𝑥!"

𝑥!" 𝑥!# 𝑥## 𝑥$#

𝑥!# 𝑥## 𝑥$#𝑥##

𝑥##k=3 𝑥!$ 𝑥#$ 𝑥$$
k=2

𝑥!% 𝑥#% 𝑥$%𝑥!" 𝑥##

𝑥!" 𝑥##= 𝑥#! 𝑥$% 𝑥!% 𝑥#% 𝑥$%

k=0

𝑥!"

𝑥!"

𝑥!"

𝑥!$

𝑥!"

𝑥#!

𝑥#!

𝑥!$ 𝑥#!

𝑥!$ 𝑥#! 𝑥$%

Actual Shared data
value

𝑥!" 𝑥#" 𝑥$"

𝑥#"

𝑥#!

𝑥#!

𝑥$"

𝑥$"

𝑥$#

𝑥$#

𝑥$#

𝑥$%

Figure 2.2: Inconsistent read representation. On the left we have the local memory of M1.
We can see that while it’s reading the data coordinate by coordinate, machines M2 and M3
are updating the data. In the 4th iteration, M1 has locally a data with coordinates whose
counters are different.

that setting, n is the number of data points, x ∈ Rd includes the parameters of a machine
learning model (linear functions, neural networks, etc.), and the function fi is the loss of
the model x at the i-th data point. Due to the large scale of data points used in machine
learning/deep learning, leveraging gradient descent (GD) for the problem (2.2.1) can be
excessively costly both in terms of computational power and storage. To overcome these
issues, several stochastic variants of gradient descent have been proposed in recent years.

2.2.1 Stochastic Gradient Descent (SGD)

The most common version of stochastic approximation [89] applied to (2.2.1) is that
where at each step the full gradient is replaced by ∇fi, the gradient of a function fi, with
i sampled uniformly among {1, · · · , n}. This procedure yields stochastic gradient descent
(SGD), often referred to as incremental SGD.

Algorithm 2.4 (SGD):
Let (ik)k∈N be a sequence of i.i.d. random variables uniformly distributed on
{1, . . . , n}. Let γk > 0 for all k ∈ N and set the initial point x0 = x0 ∈ H. Define

for k = 0, 1, . . .⌊
xk+1 = xk − γk∇fik(xk).

(SGD)

In its vanilla version or modified ones (AdaGrad [34], ADAM [60], etc.), SGD is ubiq-
uitous in modern machine learning and deep learning. Stochastic approximation [89]
provides the appropriate framework to study the theoretical properties of the SGD algo-
rithm, which are nowadays well-understood [17, 18, 57, 75]. Theoretical analysis shows
that SGD has a worse convergence rate compared to its deterministic counterpart GD.
Indeed, SGD has the following rates [47]

20 CHAPTER 2

Theorem 2.11: SGD rates

Assume that fi is convex and L−smooth for all i ∈ [n]. Let µ > 0. Suppose 0 < γk <
1
2L and argminF ̸= ∅, and set

σ2 = sup
x∈argminF

Ei∥∇fi(x)∥2 < +∞.

Then for every k ∈ N,

(i) we have

E[F (x̄k)]− F∗ ≤
dist

(
x0, argminF

)2
2
∑k−1

t=0 γt(1− 2γtL)
+

2σ2
∑k−1

t=0 γ
2
t∑k−1

t=0 γt(1− 2γtL)
,

where x̄k =

k−1∑
t=0

γt(1− 2γtL)∑k−1
t=0 γt(1− 2γtL)

xt,

(ii) if F is µ−strongly convex and γk = γ, with {x∗} = argminF ,

E∥xk − x∗∥2 ≤ (1− γµ)k∥x0 − x∗∥2 +
2γ

µ
σ2,

which implies

E[F (xk)]− F∗ ≤
L

2
(1− γµ)k∥x0 − x∗∥2 +

γL

µ
σ2.

Corollary 2.12 (Complexity of SGD). We consider the general setting of Theorem 2.11.
Let ϵ > 0. Suppose L > 0. Then the following hold.

(i) Set γk = 1
2L

√
k
. Then for k ≥ 4,

k ≥ 1

ϵ2

(
2L∥x0 − x∗∥2 +

σ2

L

)2

=⇒ E[F (x̄k)]− F∗ ≤ ϵ. (2.2.2)

(ii) if F is µ−strongly convex and γk = γ = min
{
ϵ
2

µ
Lσ2 ,

1
2L

}
, then

k ≥ max

{
1

ϵ

2Lσ2

µ2
,
2L

µ

}
log

(
L∥x0 − x∗∥2

ϵ

)
=⇒ E[F (xk)]− F∗ ≤ ϵ. (2.2.3)

Whereas GD has these rates [47]

Theorem 2.13: GD rates

Let µ > 0. Assume that fi is convex and L−smooth for all i ∈ [n] with L > 0. For
every k ∈ N,

(i) assuming that argminF ̸= ∅, if 0 < γk = γ ≤ 1
L ,

F (xk)− F∗ ≤
dist

(
x0, argminF

)2
2γk

,

(ii) if F is µ−strongly convex and 0 < γk = γ ≤ 1
L , with {x∗} = argminF ,

∥xk − x∗∥2 ≤ (1− γµ)k ∥x0 − x∗∥2,

2.2. STOCHASTIC ALGORITHMS AND VARIANCE REDUCTION 21

which implies

F (xk)− F∗ ≤
L

2
(1− γµ)k ∥x0 − x∗∥2.

Corollary 2.14 (Complexity of GD). We consider the general setting of Theorem 2.13. Let
ϵ > 0. Then the following hold.

(i) If 0 < γk = γ ≤ 1
L , then

k ≥ ∥x0 − x∗∥2

2γϵ
=⇒ E[F (xk)]− F∗ ≤ ϵ. (2.2.4)

(ii) if F is µ−strongly convex and 0 < γk = γ ≤ 1
L , then

k ≥ 1

µγ
log

(
L∥x0 − x∗∥2

2ϵ

)
=⇒ E[F (xk)]− F∗ ≤ ϵ. (2.2.5)

Remark 2.15:

(i) As exhibited in Theorem 2.11 (i) in the convex case, we have convergence for
SGD if we make the usual assumption that (γk)k∈N ∈ ℓ2 \ ℓ1. Setting instead a
constant stepsize γ yields

E[F (x̄k)]− F∗ ≤
dist

(
x0, argminF

)2
2γ(1− 2γL)k

+
2γ

(1− 2γL)
σ2. (2.2.6)

From Equation (2.2.6) above, in the convex case, when the stepsize is con-
stant, we observe that, asymptotically, the function value optimality gap of
SGD is bounded by 2γ

(1−2γL)σ
2, in expectation. But it does not necessarily go to

0 as for GD in Theorem 2.13. In the same way, for the strongly convex case,
we can see, from Theorem 2.11 (ii), that, asymptotically, the iterates approach
linearly, in expectation, a ball centered at x∗ with radius γL

µ σ
2. They also do

not necessarily go to x∗ as for GD in Theorem 2.13. In both cases, this is due
to the “variance” σ2 at the minimum that is factored in those terms. To address
this issue, it suffices to impose the stepsize to go appropriately to zero, which
will eventually nullify the problematic terms; hence making the optimality gap
tends to zero. In practice, this requirement is hard to follow; and the appropri-
ate choice of the stepsize is one of the major issues in SGD implementations. In
particular, if the initial stepsize is too big, SGD blows up even if the sequence of
stepsizes satisfies the suitable decrease requirement, see, e.g., [75]. Therefore,
the stepsize needs to be tuned by hand, and for solving problem (2.2.1), this is
typically time-consuming.

(ii) GD exhibits complexities for the function values of order O(1/ϵ) for convex
functions and O(log 1/ϵ) for strongly convex functions. Meanwhile, SGD has
worse complexities of the function values varying from O(1/ϵ2) to O(1/ϵ) re-
spectively.

22 CHAPTER 2

2.2.2 Variance reduction methods for SGD

As observed above, the convergence rates for SGD are not only worse than those of their
deterministic counterparts, but also they are obtained for a vanishing stepsize. This is
due to the non-vanishing variance of the stochastic estimator of the true gradient. In or-
der to circumvent this issue, starting from SVRG [3, 54], a new wave of SGD algorithms
was developed with the aim of reducing the variance and recovering standard GD rates
with a constant stepsize. Different methods were developed, and all share a O(1/k) and
a O(e−Cµk) convergence rate for function values for convex and µ-strongly convex objec-
tive functions, respectively. In the convex case the convergence is ergodic. Apart from
SVRG, the other methods share the idea of reducing the variance by aggregating different
stochastic estimates of the gradient. Among them, we mention SAG [93] and SAGA [31].
In subsequent years, a plethora of papers have appeared on variance reduction techniques;
see for example [37, 61, 80, 113]. The paper [45] provided a unified study of variance
reduction techniques for SGD that encompasses many of them. The latter work [45] has
inspired our unified study of variance reduction for SPPA in Chapter 4.

The key to reducing the variance of a random variable is to use the following trick
[31]. Let X be a random variable. Say we want to estimate E[X] and our initial estimator
is X. Given another random variable Z whose expectation is easier to compute, we can
construct a random variable XZ with the same expectation as X by setting:

XZ = X − Z + E[Z].

It follows that variance of XZ is

Var(XZ) = Var(X) + Var(Z)− 2Cov(X,Z).

So ifX and Y are correlated enough, i.e. Cov(X,Z) is big enough, we get that the variance
of XZ is less than variance of X; to this aim, it is sufficient to have Cov(X,Z) > 1

2Var(Z).
In that case, not only XZ is an unbiased estimator of E[X], but also it has less variance
than X.

In the context of SGD, at each iteration k, X = ∇fik(xk) and we use the conditional
expectation E[X|xk] = ∇F (xk). The goal of variance reduction techniques is to find a
good Z and replace X = ∇fik(xk) by XZ . Depending on the choice of Z, we get different
algorithms.

Now we will delve into more details about two relevant examples of variance reduction
for SGD. We will present only two variance reduction techniques for conciseness purposes,
although there are many more examples that appeared in the literature. The interested
reader may refer to [37, 45, 61, 80, 113] for further information.

Stochastic variance reduced gradient (SVRG)

The first example we present is SVRG [54]. At iteration k, we set Z = ∇fik(x̃), where x̃ is
some iterate in the past that is reused for a number of iterations.

2.2. STOCHASTIC ALGORITHMS AND VARIANCE REDUCTION 23

Algorithm 2.5 (SVRG):
Let m ∈ N, with m ≥ 1, and (ξs)s∈N, (it)t∈N be two independent sequences of
i.i.d. random variables uniformly distributed on {0, 1, . . . ,m − 1} and {1, . . . , n} re-
spectively. Let γ > 0 and set the initial point x̃0 ≡ x̃0 ∈ H. Then

for s = 0, 1, . . .
x0 = x̃s

for k = 0, . . . ,m− 1⌊
xk+1 = xk − γ

(
∇fism+k

(xk)−∇fism+k
(x̃s) +∇F (x̃s)

)
x̃s+1 =

∑m−1
k=0 δk,ξsx

k,

(SVRG)

where δk,h is the Kronecker symbol.

Theorem 2.16: [54]

Assume that all fi are convex and F is µ−strongly convex with µ > 0. Assume also
that 0 < γ < 1

4L and m is sufficiently large so that

θ =
1

µγ(1− 2Lγ)m
+

2Lγ

1− 2Lγ
< 1,

then we have geometric convergence in expectation for SVRG:

E[F (x̃s)]− F∗ ≤ θs
(
F (x̃0)− F∗

)
Corollary 2.17. Under the same assumptions as in Theorem 2.16, SVRG has an iteration
complexity of order O

(
(n+ L

µ) log(
1
ε)
)

[61].

Stochastic average gradient algorithm

We can also set, at each iteration k, X = ∇fik(ϕkik), where ϕkik is some iterate in the past.
But contrary to SVRG, it is used only once.

Algorithm 2.6 (SAGA):
Let (ik)k∈N be a sequence of i.i.d. random variables uniformly distributed on
{1, . . . , n}. Let γ > 0. Set the initial point x0 ≡ x0 ∈ H and, for every i ∈ [n],
ϕ0
i = x0. Then

for k = 0, 1, . . .⌊
xk+1 = xk − γ

(
∇fik(xk)−∇fik(ϕkik) +

1
n

∑n
i=1∇fi(ϕki)

)
,

∀ i ∈ [n] : ϕk+1
i = ϕki + δi,ik(x

k − ϕki),

(SAGA)

where δi,j is the Kronecker symbol.

Theorem 2.18: [31]

Let L, µ > 0. Let fi be convex and L−smooth and (xk)k∈N be generated by SAGA,
with γ = 1

3L . The following hold.

24 CHAPTER 2

(i) Assuming that argminF ̸= ∅, then, for every k ∈ N,

E[F (x̄k)]− F∗ ≤
8Ldist(x0, argminF)2 + 4n(F (x0)− F∗)

k
,

where x̄k =
1

k

k∑
t=1

xt.

(ii) If fi is µ−strongly convex and {x∗} = argminF , then, for every k ∈ N,

E[||xk − x∗||2] ≤ θk
(
||x0 − x∗||2 +

2

3L
(F (x0)− F∗)

)
,

which implies

E[F (xk)]− F∗ ≤ θk
L

2

(
||x0 − x∗||2 +

2

3L
(F (x0)− F∗)

)
,

with θ = 1−min
{

1
4n ;

µ
3L

}
.

Corollary 2.19. Let ε > 0. Under the same assumptions in Theorem 2.18, we have the
following iteration complexity

(i) k ≥ O

(
n+ L

ε

)
=⇒ E[F (x̄k)]− F∗ < ε.

(ii) k ≥ O
(
(n+L/µ) log(1/ε)

)
=⇒ E[F (xk)]− F∗ < ε, if each fi is µ−strongly convex.

Remark 2.20:

(i) Both SVRG and SAGA can recover GD rates without sacrificing too much com-
putation efficiency of SGD.

(ii) SVRG needs a computation of the full gradient every m iterations instead of
every iteration for GD. In that sense it is more costly that SGD but roughly m
times less expensive than GD.

(iii) SAGA, on the other end, needs only one computation of the full gradient at
the beginning of the algorithm. Basically it has the same computational cost
as SGD. But a table of n stochastic gradients should be stored. Making it less
memory efficient [31, 48].

(iv) As a general rule of thumb, when memory is a concern it is better to use SVRG.
When it is not, SAGA may be a better choice.

2.2.3 Stochastic proximal point algorithm (SPPA)

In the past few years, stochastic proximal point algorithm (SPPA) has emerged in the
literature. Just like for the gradient cases, SPPA uses at each iteration one summand
instead of the whole function F . The algorithm is as follows

2.2. STOCHASTIC ALGORITHMS AND VARIANCE REDUCTION 25

Algorithm 2.7:
Let (ik)k∈N be a sequence of i.i.d. random variables uniformly distributed on
{1, . . . , n}. Let γk > 0 for all k ∈ N and set the initial point x0 ≡ x0 =∈ H. De-
fine

for k = 0, 1, . . .⌊
xk+1 = proxγkfik (x

k).
(SPPA)

Remark 2.21:

(i) Recent works, in particular [5, 58, 90], showed that SPPA is more robust to the
stepsize choice compared to SGD.

(ii) In addition, the convergence rates are the same as those of SGD, in various
settings [5, 12, 82], possibly including a momentum term [58, 105, 106, 107].
That’s also means that the convergence rates are worse than those of determin-
istic PPA. This is due to the variance of SPPA.

The goal of Chapter 4 of this document will be to study variance reduction techniques
for SPPA in order to recover the standard rates of SPPA.

CHAPTER 3

Convergence of an Asynchronous
Block-Coordinate Forward-Backward

Algorithm for Convex Composite Optimization

In this chapter, we study the convergence properties of a randomized block-coordinate
descent algorithm for the minimization of a composite convex objective function,
where the block-coordinates are updated asynchronously and randomly according
to an arbitrary probability distribution. We prove that the iterates generated by the
algorithm form a stochastic quasi-Fejér sequence and thus converge almost surely to
a minimizer of the objective function. Moreover, we prove a general sublinear rate of
convergence in expectation for the function values and a linear rate of convergence in
expectation under an error bound condition of Tseng type. Under the same condition
strong convergence of the iterates is provided as well as their linear convergence rate.

3.1 Introduction

We recall the composite minimization problem

minimize
x∈H

F (x) := f(x) + g(x), g(x) :=
m∑
i=1

gi(xi), (3.1.1)

where H is the direct sum of m separable real Hilbert spaces (Hi)1≤i≤m, that is, H =⊕m
i=1Hi and the following assumptions are satisfied unless stated otherwise.

Assumptions 3.1:

A1 f : H → R is convex and differentiable.

A2 For every i ∈ {1, · · · ,m}, gi : Hi →]−∞,+∞] is proper convex and lower
semicontinuous.

A3 The map ∇f(x1, . . . , xi−1, ·, xi+1, . . . , xm) : Hi → H is Lipschitz continuous with
constant Lres > 0 and the map ∇if(x1, . . . , xi−1, ·, xi+1, . . . , xm) : Hi → Hi is
Lipschitz continuous with constant Li, for all x ∈ H and i ∈ {1, · · · ,m}. Note
that Lmax := maxi Li ≤ Lres and Lmin := mini Li.

A4 F attains its minimum F∗ := minF on H.

To solve problem 3.1.1, we use the following asynchronous block-coordinate descent
algorithm. It is an extension of the parallel block-coordinate proximal gradient method

27

28 CHAPTER 3

considered in [91] to the asynchronous setting, where an inconsistent delayed gradient
vector may be processed at each iteration.

Algorithm 3.1:
Let (ik)k∈N be a sequence of i.i.d. random variables with values in [m] := {1, . . . ,m}
and pi be the probability of the event {ik = i}, for every i ∈ [m]. Let (dk)k∈N be a
sequence of integer delay vectors, dk = (dk1, . . . , d

k
m) ∈ Nm such that max1≤i≤m dki ≤

min{k, τ} for some τ ∈ N. This delay vector is deterministic and independent of
the block coordinates selection process (ik)k∈N. Let (γi)1≤i≤m ∈ Rm++ and x0 =
(x01, . . . , x

0
m) ∈ H be a constant random variable. Iterate

for k = 0, 1, . . . for i = 1, . . . ,m⌊
xk+1
i =

{
proxγigi

(
xki − γi∇if(x

k−dk)
)

if i = ik

xki if i ̸= ik,

(3.1.2)

where xk−dk = (x
k−dk1
1 , . . . , x

k−dkm
m).

In this work, we assume the following stepsize rule

(∀ i ∈ [m]) γi(Li + 2τLrespmax/
√
pmin) < 2, (3.1.3)

where pmax := max1≤i≤m pi and pmin := min1≤i≤m pi. If there is no delay, namely τ = 0,
the usual stepsize rule γi < 2/Li is obtained [27, 92].

The presence of the delay vectors in the above algorithm allows to describe a parallel
computational model on multiple cores, as we explained in the introduction. We remark
that, in our setting, for all k ∈ N, the delay vector dk is considered to be a parameter
that does not dependent on the random variable ik, similarly to the works [29, 50, 66,
68]. In this way, the stochastic attribute of the sequence (xk)k∈N is not determined by
the delay, but it only comes from the stochastic selection of the block-coordinates. Some
papers consider the case where the delay vector is a stochastic variable that may depend
on ik [20, 98] or that it is unbounded [50, 98]. Those setting are natural extensions to our
work that we are considering for future work. Finally, a completely deterministic model,
both in the block’s selection and delays is studied in [25].

Even though our study accounts for an inconsistent read paradigm, the theoretical
results do not make any difference with the consistent read setting, because in the end
only the maximum delay matters. In the literature other papers consider the inconsistent
read and the results do not also make any difference with the consistent read, see [20, 29,
66].

3.1.1 Related work
The topic on parallel asynchronous algorithm is not a recent one. In 1969, Chazan and
Miranker [21] presented an asynchronous method for solving linear equations. Later
on, Bertsekas and Tsitsiklis [13] proposed an inconsistent read model of asynchronous
computation. Due to the availability of large amount of data and the importance of large
scale optimization, in recent years we have witnessed a surge of interest in asynchronous
algorithms. They have been studied and adapted to many optimization problems and
methods such as stochastic gradient descent [1, 39, 64, 81, 88], randomized Kaczmarz
algorithm [67], and stochastic coordinate descent [6, 68, 83, 98, 111].

In general, stochastic algorithms can be divided in two classes. The first one is when
the function f is an expectation i.e., f(x) = E[h(x; ξ)]. At each iteration k only a stochas-
tic gradient ∇h(·; ξk) is computed based on the current sample ξk. In this setting, many

3.1. INTRODUCTION 29

asynchronous versions have been proposed, where delayed stochastic gradients are con-
sidered, see [7, 23, 39, 65, 72, 76]. The second class, which is the one we studied, is that
of randomized block-coordinate methods. Below we describe the related literature.

The work [66] studied a problem and a model of asynchronicity which is similar to
ours, but the proposed algorithm AsySPCD requires that the random variables (ik)k∈N are
uniformly distributed (i.e, pi = 1/m) and that the stepsize is the same for all the block-
coordinates. This latter assumption is an important limitation, since it does not exploit
the possibility of adapting the stepsizes to the block-Lipschitz constants of the partial gra-
dients, hence allowing longer steps along block-coordinates. A linear rate of convergence
is also obtained by exploiting a quadratic growth condition which is essentially equiva-
lent to our error bound condition [33]. For a discussion on the limitations of [66] and
the improvements we bring, see Remark 3.12 point (vi) and Section 3.6 on numerical
experiments.

In the nonconvex case, [29] considers an asynchronous algorithm which may select
the blocks both in an almost cyclic manner or randomly with a uniform probability. In the
latter case, it is proved that the cluster points of the sequence of the iterates are almost
surely stationary points of the objective function. However, the convergence of the whole
sequence is not provided, nor is given any rate of convergence for the function values.
Moreover, under the Kurdyka-Łojasiewicz (KL) condition [16, 33], linear convergence is
also derived, but it is restricted to the deterministic case.

To conclude, we note that our results, when specialized to the case of zero delays, fully
recover the ones given in [91].

3.1.2 Contributions

The main contributions of this work are summarized below:

• We first prove the almost sure weak convergence of the iterates (xk)k∈N, generated
by Algorithm 3.1, to a random variable x∗ taking values in argminF . At the same
time, we prove a sublinear rate of convergence of the function values in expectation,
i.e, E[F (xk)] − minF = o(1/k). We also provide for the same quantity an explicit
rate of O(1/k), see Theorem 3.11.

• Under an error bound condition of Luo-Tseng type, on top of the strong convergence
a.s of the iterates, we prove linear convergence in expectation of the function values
and in mean of the iterates, see Theorem 3.21.

We improve the state-of-the-art under several aspects: we consider an arbitrary probability
for the selection of the blocks; the adopted stepsize rule improves over the existing ones,
and coincides with the one in [29] in the special case of uniform selection of the blocks —
in particular, it allows for larger stepsizes when the number of blocks grows; the almost
sure convergence of the iterates in the convex and stochastic setting is new and relies on
a stochastic quasi-Fejerian analysis; linear convergence under an error bound condition is
also new in the asynchronous stochastic scenario.

The rest of the chapter is organized as follows. In the next subsection we set up basic
notation. In Section 3.2 we recall few facts and we provide some preliminary results.
The general convergence analysis is given in Section 3.3 where the main Theorem 3.11 is
presented. Section 3.4 contains the convergence theory under an additional error bound
condition, while applications are discussed in Section 3.5. The majority of proofs are
postponed to Appendices 3.7 and 3.8.

30 CHAPTER 3

3.2 Preliminaries

In this section we present basic definitions and facts that are used in the rest of the chapter.
Most of them are already known, and we include them for clarity.

In the rest of the chapter, we extend the definition of xk by setting xk = x0 for every
k ∈ {−τ, . . . ,−1}. Using the notation of Algorithm 3.1, we also set, for any k ∈ N

x̂k = xk−dk

x̄k+1
i = proxγigi

(
xki − γi∇if(x̂

k)
)

for all i ∈ [m]

xk+1 = xk + Jik
[
proxγikgik

(
xkik − γik∇ikf(x̂

k)
)
− xkik

]
∆k = xk − x̄k+1.

(3.2.1)

With this notation, we have

x̄k+1
ik

= proxγikgik
(
xkik − γik∇ikf(x̂

k)
)
= xk+1

ik
; ∆k

ik
= xkik − xk+1

ik
. (3.2.2)

We remark that the random variables xk and x̄k+1 depend on the previously selected
blocks, and related delays. More precisely, we have

xk = xk(i0, . . . , ik−1,d
0, . . . ,dk−1)

x̄k+1 = x̄k+1(i0, . . . , ik−1,d
0, . . . ,dk).

(3.2.3)

From (3.2.1) and (3.2.2), we derive

xkik − xk+1
ik

γik
−∇ikf(x̂

k) ∈ ∂gik(x
k+1
ik

) and
xki − x̄k+1

i

γi
−∇if(x̂

k) ∈ ∂gi(x̄
k+1
i) (3.2.4)

and therefore, for every x ∈ H

⟨∇ikf(x̂
k)−

∆k
ik

γik
, xk+1

ik
− xik⟩+ gik(x

k+1
ik

)− gik(xik) ≤ 0. (3.2.5)

Suppose that x and x′ in H differ only for one component, say that of index i, then it
follows from Assumption A3 and the Descent Lemma [78, Lemma 1.2.3], that

f(x′) = f(x1, . . . , xi−1, x
′
i, xi+1, · · · , xm)

≤ f(x) + ⟨∇if(x), x
′
i − xi⟩+

Li
2
|x′i − xi|2 (3.2.6)

≤ f(x) + ⟨∇f(x), x′ − x⟩+ Lmax

2
∥x′ − x∥2. (3.2.7)

We finally need the following results on the convergence of stochastic quasi-Fejér se-
quences and monotone summable positives sequences.

Fact 3.2 ([26], Proposition 2.3). Let S be a nonempty closed subset of a separable real
Hilbert space H. Let F = (Fn)n∈N be a sequence of sub-sigma algebras of F such that
(∀n ∈ N) Fn ⊂ Fn+1. We denote by ℓ+(F) the set of sequences of R+-valued random
variables (ξn)n∈N such that, for every n ∈ N, ξn is Fn-measurable. We set

ℓ1+(F) =

{
(ξn)n∈N ∈ ℓ+(F)

∣∣∣∣ ∑
n∈N

ξn < +∞ P-a.s.
}
.

3.2. PRELIMINARIES 31

Given a sequence (xn)n∈N of H-valued random variables, we define

X = (Xn)n∈N , where (∀n ∈ N) Xn = σ (x0, . . . , xn) .

Let (xn)n∈N be a sequence of H-valued random variables. Suppose that, for every z ∈ S, there
exist (χn(z))n∈N ∈ ℓ1+(X), (ϑn(z))n∈N ∈ ℓ+(X), and (ηn(z))n∈N ∈ ℓ1+(X) such that the
stochastic quasi-Féjer property is satisfied P-a.s.:

(∀n ∈ N) E
[
∥xn+1 − z∥2 | Fn

]
+ ϑn(z) ⩽ (1 + χn(z)) ∥xn − z∥2 + ηn(z).

Then the following hold:

(i) (xn)n∈N is bounded P-a.s.

(ii) Suppose that the set of weak cluster points of the sequence (xn)n∈N is P-a.s. contained
in S. Then (xn)n∈N weakly converges P-a.s. to an S-valued random variable.

Fact 3.3 ([36, Example 5.1.5]). Let ζ1 and ζ2 be independent random variables with values
in the measurable spaces Z1 and Z2 respectively. Let φ : Z1 × Z2 → R be measurable and
suppose that E[|φ(ζ1, ζ2)|] < +∞. Then E[φ(ζ1, ζ2) | ζ1] = ψ(ζ1), where for all z1 ∈ Z1,
ψ(z1) = E[φ(z1, ζ2)].

Fact 3.4. Let (ak)k∈N ∈ RN
+ be a decreasing sequence of positive numbers and let b ∈ R+

such that
∑

k∈N ak ≤ b < +∞. Then ak = o(1/(k+1)) and for every k ∈ N, ak ≤ b/(k+1).

Fact 3.5. Let (ak)k∈N ∈ RN
+ be a sequence of positive numbers. (∀n, k ∈ Z, k ≥ n),

k−1∑
h=n

ah =

k−1∑
h=n

(h− n+ 1)ah −
k∑

h=n+1

(h− n)ah + (k − n)ak.

3.2.1 Auxiliary lemmas

Here we collect technical lemmas needed for our analysis, using the notation given in
(3.2.1). For reader’s convenience, we provide all the proofs in Appendix 3.7.

The following result appears in [66, page 357].

Lemma 3.6. Let (xk)k∈N be the sequence generated by Algorithm 3.1. We have

(∀ k ∈ N) xk = x̂k −
∑

h∈J(k)

(xh − xh+1), (3.2.8)

where J(k) ⊂ {k − τ, . . . , k − 1} is a random set.

The next lemma bounds the difference between the delayed and the current gradient
in terms of the steps along the block coordinates, see [66, equation A.7].

Lemma 3.7. Let (xk)k∈N be the sequence generated by Algorithm 3.1. It follows

(∀ k ∈ N) ∥∇f(xk)−∇f(x̂k)∥ ≤ Lres

∑
h∈J(k)

∥xh+1 − xh∥.

32 CHAPTER 3

Remark 3.8: Since ∥ · ∥2V ≤ pmax∥ · ∥2 and ∥ · ∥2 ≤ p−1
min∥ · ∥2V, Lemma 3.7 yields

∥∇f(xk)−∇f(x̂k)∥V ≤ √
pmax∥∇f(xk)−∇f(x̂k)∥

≤ Lres
√
pmax

∑
h∈J(k)

∥xh+1 − xh∥

≤ Lres

√
pmax√
pmin

∑
h∈J(k)

∥xh+1 − xh∥V.

We set LV
res = Lres

√
pmax√
pmin

.

The result below yields a kind of inexact convexity inequality due to the presence of
the delayed gradient vector. It is our variant of [66, Equation A.20]:

2γ

Lmax
E
[
⟨(PargminF (x

k)− xk)ik ,∇ikf(x̂
k)⟩
]
≤ 1

n
E
(
f(PargminF (x

k))− f(xk)
)

+
Lmaxτθ

′

2n2
E∥xk − x̄k+1∥2.

Lemma 3.9. Let (xk)k∈N be a sequence generated by Algorithm 3.1. Then, for every k ∈ N,

(∀ x ∈ H) ⟨∇f(x̂k), x− xk⟩ ≤ f(x)− f(xk) +
τLres

2

∑
h∈J(k)

∥xh − xh+1∥2.

The result below generalizes to the asynchronous case Lemma 4.3 in [91].

Lemma 3.10. Let H be a real Hilbert space. Let φ : H → R be differentiable and convex,
and ψ : H →]−∞,+∞] be proper, lower semicontinuous and convex. Let x, x̂ ∈ H and set
x+ = proxψ(x−∇φ(x̂)). Then, for every z ∈ H,〈

x− x+, z− x
〉
≤ ψ(z)− ψ(x) + ⟨∇φ(x̂), z− x⟩

+ ψ(x)− ψ
(
x+
)
+
〈
∇φ(x̂), x− x+

〉
− ∥x− x+∥2.

3.3 Convergence analysis

In this section we assume just convexity of the objective function, and we provide worst
case convergence rate as well as almost sure weak convergence of the iterates.

Throughout the section we set

δ = max
i∈[m]

(
Liγi + 2γiτL

V
res

√
pmax

)
= max

i∈[m]

(
Liγi + 2γiτLres

pmax√
pmin

)
, (3.3.1)

where the constants Li’s and Lres are defined in Assumption A3 and the constant LV
res is

defined in Remark 3.8. The main convergence theorem is as follows.

Theorem 3.11

Let (xk)k∈N be the sequence generated by Algorithm 3.1 and suppose that δ < 2. Then
the following hold.

(i) The sequence (xk)k∈N weakly converges P-a.s. to a random variable that takes

3.3. CONVERGENCE ANALYSIS 33

values in argminF .

(ii) E[F (xk)]− F∗ = o(1/k). Furthermore, for every integer k ≥ 1,

E[F (xk)]− F∗ ≤
1

k

(
dist2W(x0, argminF)

2
+ C

(
F (x0)− F∗

))
,

where C =
max

{
1, (2− δ)−1

}
pmin

− 1 + τ
1

√
pmin(2− δ)

(
1 +

pmax√
pmin

)
.

Remark 3.12:

(i) Theorem 3.11 extends classical results about the forward-backward algorithm
to the asynchronous and stochastic block-coordinate setting. See [92] and
reference therein. Moreover, we note that the above results, when specialized
to the synchronous case, that is, τ = 0, yield exactly [91, Theorem 4.9]. The
o(1/k) was also proven in [63].

(ii) The almost sure weak convergence of the iterates for the asynchronous stochas-
tic forward-backward algorithm is new. In general only convergence in value
is provided or, in the nonconvex case, cluster points of the sequence of the
iterates are proven to be almost surely stationary points [20, 29].

(iii) As it can be readily seen from statement (ii) in Theorem 3.11, our results de-
pend only on the maximum possible delay, and therefore apply in the same
way to the consistent and inconsistent read model.

(iv) If we suppose that the random variables (ik)k∈N are uniformly distributed over
[m], the stepsize rule reduces to γi < 2/(Li + 2τLres/

√
m), which agrees with

that given in [29] and gets better when the number of blocks m increases. In
this case, we see that the effect of the delay on the stepsize rule is mitigated
by the number of blocks. In [20] the stepsize is not adapted to the blockwise
Lipschitz constants Li’s, but it is chosen for each block as γ < 2/(2Lf + τ2Lf)
with Lf ≥ Lres, leading, in general, to smaller stepsizes. In addition, this rule
has a worse dependence on the delay τ and lacks of any dependence on the
number of blocks.

(v) The framework of [20] is nonconvex and considers more general types of al-
gorithms, in the flavor of majorization-minimization approaches [53]. On the
other hand the assumptions are stronger (in particular, they assume F to be
coercive) and the rate of convergence is given with respect to ∥xk−proxg(x

k−
∇f(xk))∥2, a quantity which is hard to relate to F (xk) − F∗. They also prove
that the cluster points of the sequence of the iterates are almost surely station-
ary points.

(vi) The work [66] was among the first to study an asynchronous version of the
randomized coordinate gradient descent method. There, the coordinates were
selected at random with uniform probability and the stepsize was chosen the
same for every coordinate. However, the stepsize was chosen to depend ex-
ponentially on τ , i.e. as O(1/ρτ) with ρ > 1, which is much worse than our
O(1/τ). The same problem affects the constant in front of the bound of the
rate of convergence which indeed is of the form O(ρτ).

34 CHAPTER 3

To circumvent these limitations above they put a condition in [66, Corollary
4.2] that bounds how big the maximum delay τ can be:

4eΛ(τ + 1)2 ≤
√
m, Λ =

Lres

Lmax
, (3.3.2)

where m is the dimension of the space. However, this inequality is never satis-
fied if Λ >

√
m/(4e), since this would imply

(τ + 1)2 < 1,

contradicting the fact that τ is a non-negative integer. An example where
this happens is when we are dealing with a quadratic function with positive
semidefinite Hessian Q ∈ Rn×n. In this case

Lres = max
i

∥Q·i∥2 and Lmax = max
i

∥Q·i∥∞ with Q·i the ith column of Q.

Say one column of Q has constant entries equal to p > 0, while the absolute
value of all the other entries of Q are less than p. Then,

Λ =
p
√
m

p
=

√
m >

√
m

4e
.

In Section 3.6, we show two experiments on real datasets for which condition
(3.3.2) is not verified.

Before giving the proof of Theorem 3.11, we present few preliminary results. The first
one is a proposition showing that the function values are decreasing in expectation. The
proof of this proposition, as well as those of the next intermediate results, are given in
Appendix 3.8.

Proposition 3.13

Assume that δ < 2 and let (xk)k∈N be the sequence generated by Algorithm 3.1. Then,
for every k ∈ N,

(2− δ)
pmin

2
∥x̄k+1 − xk∥2Γ−1

≤ F (xk) + αk − E
[
F (xk+1) + αk+1

∣∣ i0, . . . , ik−1

]
P-a.s., (3.3.3)

where αk =
LV
res

2
√
pmax

k−1∑
h=k−τ

(h− (k − τ) + 1)∥xh+1 − xh∥2V.

Lemma 3.14. Let (xk)k∈N be the sequence generated by Algorithm 3.1. Then for every k ∈ N,
we have

⟨∇f(xk)−∇f(x̂k), x̄k+1 − xk⟩V

≤ τLV
res

√
pmax

m∑
i=0

pi|x̄ik+1 − xki |2 + αk − E
[
αk+1

∣∣ i0, . . . , ik−1

]
,

where αk is defined in Proposition 3.13.

The next two results extend [91, Proposition 4.4, Proposition 4.5] to our more general

3.3. CONVERGENCE ANALYSIS 35

setting.

Lemma 3.15. Let (xk)k∈N be a sequence generated by Algorithm 3.1. Let k ∈ N and let x be
an H-valued random variable which is measurable w.r.t. i1, . . . , ik−1. Then,

E[∥xk+1 − x∥2W | i0, . . . , ik−1]− ∥xk − x∥2W = ∥x̄k+1 − x∥2Γ−1 − ∥xk − x∥2Γ−1 (3.3.4)

and E[∥xk+1 − xk∥2W | i0, . . . , ik−1] = ∥x̄k+1 − xk∥2Γ−1 .

Proposition 3.16. Let (xk)k∈N be a sequence generated by Algorithm 3.1 and suppose that
δ < 2. Let (x̄k)k∈N and (αk)k∈N be defined as in (3.2.1) and in Proposition 3.13 respectively.
Then, for every k ∈ N,

(∀ x ∈ H) ⟨xk−x̄k+1, x− xk⟩Γ−1

≤ 1

pmin

(
F (xk) + αk − E

[
F (xk+1) + αk+1 | i0, . . . , ik−1

])
+ F (x)− F (xk) +

τLres

2

∑
h∈J(k)

∥xh − xh+1∥2

+
δ − 2

2
∥xk − x̄k+1∥2Γ−1 .

Next we state a proposition that we will use throughout the rest of this chapter. It
corresponds to [91, Proposition 4.6].

Proposition 3.17. Let (xk)k∈N be a sequence generated by Algorithm 3.1 and suppose that
δ < 2. Let (αk)k∈N be defined as in Proposition 3.13. Then, for every k ∈ N,

(∀ x ∈ H) E
[
∥xk+1 − x∥2W | i0, . . . , ik−1

]
≤ ∥xk − x∥2W

+
2

pmin

(
(δ − 1)+
2− δ

+ 1

)(
F (xk) + αk

− E
[
F (xk+1) + αk+1 | i0, . . . , ik−1

])
+ τLres

∑
h∈J(k)

∥xh − xh+1∥2

+ 2(F (x)− F (xk)). (3.3.5)

In the following, we show a general inequality from which we derive simultaneously
the convergence of the iterates and the rate of convergence in expectation of the function
values.

Proposition 3.18

Let (xk)k∈N be a sequence generated by Algorithm 3.1 and suppose that δ < 2. Let
(αk)k∈N be defined as in Proposition 3.13. Then, for all x ∈ H,

E
[
∥xk+1−x∥2W | i0, . . . , ik−1

]
≤ ∥xk−x∥2W+2

(
F (x)−E

[
F (xk+1)+αk+1 | i0, . . . , ik−1

])
+ξk,

where (ξk)k∈N is a sequence of positive random variables such that∑
k∈N

E[ξk] ≤ 2C(F (x0)− F∗), (3.3.6)

36 CHAPTER 3

with C =
max

{
1, (2− δ)−1

}
pmin

− 1 +
τ

√
pmin(2− δ)

(
1 +

pmax√
pmin

)
.

Proposition 3.19. Let (xk)k∈N be a sequence generated by Algorithm 3.1 and suppose that
δ < 2. Let (x̄k)k∈N be defined as in (3.2.1). Then there exists a sequence of H-valued random
variables (vk)k∈N such that the following assertions hold:

(i) ∀ k ∈ N : vk ∈ ∂F (x̄k+1) P-a.s.

(ii) vk → 0 and xk − x̄k+1 → 0 P-a.s., as k → +∞.

We are now ready to prove the main theorem.

Proof of Theorem 3.11.
(i): It follows from Proposition 3.18 that

(∀ x ∈ argminF) E
[
∥xk+1 − x∥2W | i0, . . . , ik−1

]
≤ ∥xk − x∥2W + ξk,

where (ξk)k∈N is a sequence of positive random variable which is P-a.s. summable. Thus,
the sequence (xk)k∈N is stochastic quasi-Fejér with respect to argminF in the norm ∥·∥W
(which is equivalent to ∥·∥). Then according to Fact 3.2 it is bounded P-a.s. We now
prove that argminF contains the weak cluster points of (xk)k∈N P-a.s. Indeed, let Ω1 ⊂ Ω
with P(Ω \ Ω1) = 0 be such that items (i) and (ii) of Proposition 3.19 hold. Let ω ∈ Ω1

and let x be a weak cluster point of (xk(ω))k∈N. There exists a subsequence (xkq(ω))q∈N
which weakly converges to x. By Proposition 3.19, we have x̄kq+1(ω) ⇀ x, vkq+1(ω) → 0,
and vkq+1(ω) ∈ ∂(f + g)(x̄kq+1(ω)). Thus, 1.10 ((iv)) (demiclosedness of the graph of
the subgradient) yields 0 ∈ ∂F (x) and hence x ∈ argminF . Therefore, again by Fact 3.2
we conclude that the sequence (xk)k∈N weakly converges to a random variable that takes
value in argminF P-a.s.

(ii): Choose x ∈ argminF in Proposition 3.18 and then take the expectation. Then we
get

E[F (xk+1) + αk+1]− F∗ ≤
1

2

(
E[∥xk − x∥2W]− E[∥xk+1 − x∥2W]

)
+

1

2
E[ξk].

Since
∑

k∈N(E[∥xk − x∥2W] − E[∥xk+1 − x∥2W]) ≤ ∥x0 − x∥2W, and recalling the bound on∑
k∈N E[ξk] in (3.3.6), we have∑

k∈N

(
E[F (xk+1) + αk+1]− F∗

)
≤

∥x0 − x∥2W
2

+ C(F (x0)− F∗).

Thus, since, in virtue of equation 3.3.3, (E[F (xk+1) + αk+1] − F∗)k∈N is decreasing, the
statement follows from Fact 3.4, considering that αk ≥ 0.

3.4 Linear convergence under error bound condition

In the previous section we get a sublinear rate of convergence. Here we show that with
an additional assumption we can get a better convergence rate. Also, we derive a strong
convergence of the iterates, improving the weak convergence proved in Theorem 3.11.

We will assume that the following Luo-Tseng error bound condition [71] holds on a
subset X ⊂ H (containing the iterates xk).

(∀x ∈ X) distΓ−1 (x, argminF) ≤ CX,Γ−1

∥∥x− proxΓ
−1

g

(
x−∇Γ−1

f(x)
)∥∥

Γ−1 . (3.4.1)

3.4. LINEAR CONVERGENCE UNDER ERROR BOUND CONDITION 37

Remark 3.20: We recall that the condition above is equivalent to the Kurdyka-
Lojasiewicz property and the quadratic growth condition [16, 33, 91]. Any of these
conditions can be used to prove linear convergence rates for various algorithms.

The following theorem is the main result of this section. Here, linear convergence of
the function values and strong convergence of the iterates are ensured.

Theorem 3.21

Let (xk)k∈N be generated by Algorithm 3.1 and suppose δ < 2 and that the error
bound condition (3.4.1) holds with X ⊃ {xk | k ∈ N} P-a.s. for some CX,Γ−1 > 0. Then
for all k ∈ N,

(i) E
[
F (xk+1)− F∗

]
≤
(
1− pmin

κ+ θ

)⌊ k+1
τ+1

⌋
E
[
F (x0)− F∗

]
,

where

κ = 1 +
(2CX,Γ−1 + δ − 2)+

2− δ
= max

{
1,

2CX,Γ−1

2− δ

}
θ =

τLresγmax

2− δ

(
p2max√
pmin

+ 1

)
≤

√
pmin

pmax(2− δ)

(
p2max√
pmin

+ 1

)
.

(ii) The sequence (xk)k∈N converges strongly P-a.s. to a random variable x∗ that

takes values in argminF and E
[
∥xk − x∗∥Γ−1

]
= O

((
1− pmin/(κ+ θ)

)⌊ k
τ+1

⌋/2).
Proof.

(i): From Proposition 3.16 we have

1

pmin
E
[
F (xk+1) + αk+1 − F (xk)− αk | i0, . . . , ik−1

]
≤ ∥xk − x̄k+1∥Γ−1∥xk − x∥Γ−1

+ F (x)− F (xk) +
τLres

2

∑
h∈J(k)

∥xh − xh+1∥2

+
δ − 2

2
∥xk − x̄k+1∥2Γ−1 ,

where αk = (Lres/(2
√
pmin))

∑k−1
h=k−τ (h − (k − τ) + 1)∥xh+1 − xh∥2V. Now, taking x ∈

argminF and using the error bound condition 3.4.1 and equation 3.3.3, we obtain

1

pmin
E
[
F (xk+1) + αk+1 − F (xk))− αk | i0, . . . , ik−1

]
≤
(
CX,Γ−1 +

δ − 2

2

)
∥xk − x̄k+1∥2Γ−1

− (F (xk)− F∗) +
τLres

2

k−1∑
h=k−τ

∥xh − xh+1∥2

≤
(2CX,Γ−1 + δ − 2)+

(2− δ)pmin
E
[
F (xk) + αk − F (xk+1)− αk+1 | i0, . . . , ik−1

]
− (F (xk)− F∗) +

τLres

2

k−1∑
h=k−τ

∥xh − x̄h+1∥2, (3.4.2)

38 CHAPTER 3

Adding and removing F∗ in both expectation yield

κE
[
F (xk+1) + αk+1 − F∗ | i0, . . . , ik−1

]
≤ κE

[
F (xk) + αk − F∗ | i0, . . . , ik−1

]
+
τLresγmaxpmin

2

k−1∑
h=k−τ

∥xh − x̄h+1∥2Γ−1

− pmin(F (x
k) + αk − F∗) + pminαk, (3.4.3)

where κ = 1 + (2CX,Γ−1 + δ − 2)+/(2− δ). Now, since ∥·∥2V ≤ γmaxp
2
max∥·∥2W we have

E[αk] ≤
τLresγmaxp

2
max

2
√
pmin

k−1∑
h=k−τ

E[∥xh+1 − xh∥2W]

=
τLresγmaxp

2
max

2
√
pmin

k−1∑
h=k−τ

E[∥x̄h+1 − xh∥2Γ−1], (3.4.4)

where in the last equality we used Lemma 3.15. From (3.3.3), we have, for k such that
k − τ ≥ 0,

k−1∑
h=k−τ

E[∥x̄h+1 − xh∥2Γ−1]

≤ 2

(2− δ)pmin

k−1∑
h=k−τ

E
[
F (xh) + αh

]
− E

[
F (xh+1) + αh+1

]
=

2

(2− δ)pmin

(
E
[
F (xk−τ) + αk−τ

]
− E

[
F (xk) + αk

])
≤ 2

(2− δ)pmin

(
E
[
F (xk−τ) + αk−τ

]
− E

[
F (xk+1) + αk+1

])
=

2

(2− δ)pmin

(
E
[
F (xk−τ) + αk−τ − F∗

]
− E

[
F (xk+1) + αk+1 − F∗

])
.

(3.4.5)

Because the sequence
(
E
[
F (xk) + αk

])
k∈N is decreasing, the transition from the second

line to the third one is allowed. Using (3.4.4) and (3.4.5) in (3.4.3) with total expectation,
we obtain

(κ+ θ)E
[
F (xk+1) + αk+1 − F∗

]
≤ (κ− pmin)E

[
F (xk) + αk − F∗

]
+ θE

[
F (xk−τ) + αk−τ − F∗

]
≤ (κ− pmin)E

[
F (xk−τ) + αk−τ − F∗

]
+ θE

[
F (xk−τ) + αk−τ − F∗

]
= (κ+ θ − pmin)E

[
F (xk−τ) + αk−τ − F∗

]
, (3.4.6)

where

θ = (2− δ)−1

(
τLresγmaxp

2
max√

pmin
+ τLresγmax

)
= τLresγmax(2− δ)−1

(
p2max√
pmin

+ 1

)
.

3.4. LINEAR CONVERGENCE UNDER ERROR BOUND CONDITION 39

That means

E
[
F (xk+1) + αk+1 − F∗

]
≤
(
1− pmin

κ+ θ

)
E
[
F (xk−τ) + αk−τ − F∗

]
≤
(
1− pmin

κ+ θ

)⌊ k+1
τ+1

⌋
E
[
F (x0) + α0 − F∗

]
. (3.4.7)

Now for k < τ , ⌊k+1
τ+1⌋ = 0. Because

(
E
[
F (xk) + αk

])
k∈N is decreasing, we know that

E
[
F (xk+1) + αk+1 − F∗

]
≤ E

[
F (x0) + α0 − F∗

]
=

(
1− pmin

κ+ θ

)⌊ k+1
τ+1

⌋
E
[
F (x0) + α0 − F∗

]
.

So (3.4.7) remains true. Also, from (3.8.10), we have

θ ≤
√
pmin

pmax
(2− δ)−1

(
p2max√
pmin

+ 1

)
.

(ii): From Jensen inequality, (3.3.3) and (3.4.7), we have

E
[
∥xk+1 − xk∥Γ−1

]
≤
√

E
[
∥xk+1 − xk∥2

Γ−1

]
≤
√
E
[
∥x̄k+1 − xk∥2

Γ−1

]
≤

√
2

pmin(2− δ)
E
[
F (xk) + αk − F∗

]
≤

√
2

pmin(2− δ)

(
1− pmin

κ+ θ

)⌊ k
τ+1

⌋
E
[
F (x0) + α0 − F∗

]
. (3.4.8)

Since 1− pmin/(κ+ θ) < 1,

E

[∑
k∈N

∥xk+1 − xk∥Γ−1

]
=
∑
k∈N

E
[
∥xk+1 − xk∥Γ−1

]
<∞.

Therefore,
∑

k∈N∥xk+1−xk∥Γ−1 <∞ P-a.s. This means the sequence (xk)k∈N is a Cauchy
sequence P-a.s. By Theorem 3.11 (i), this sequence has accumulation points that take
values in argminF . So it converges strongly P-a.s. to a random variable that takes values
in argminF .

Now let ρ = 1− pmin/(κ+ θ). For all n ∈ N,

∥xk+n − xk∥Γ−1 ≤
n−1∑
i=0

∥xk+i+1 − xk+i∥Γ−1 ≤
∞∑
i=0

∥xk+i+1 − xk+i∥Γ−1 .

Letting n→ ∞ and using (3.4.8), we get

E
[
∥xk − x∗∥Γ−1

]
≤
(

2

pmin(2− δ)
E
[
F (x0) + α0 − F∗

])1/2 ∞∑
i=0

ρ⌊
k+i
τ+1

⌋/2

≤
(

2

pmin(2− δ)
E
[
F (x0) + α0 − F∗

])1/2

ρ⌊
k

τ+1
⌋/2

∞∑
i=0

ρ⌊
i

τ+1
⌋/2

= ρ⌊
k

τ+1
⌋/2
(

2

pmin(2− δ)
E
[
F (x0) + α0 − F∗

])1/2 τ + 1

1− ρ1/2
.

40 CHAPTER 3

Remark 3.22:

(i) A linear convergence rate is also given in [66, Theorem 4.1] by assuming a
quadratic growth condition instead of the error bound condition (3.4.1). Their
rate depend on the stepsize which in general can be very small, as explained
earlier in point (vi) of Remark 3.12.

(ii) The error bound condition (3.4.1) is sometimes satisfied globally, meaning on
X = domF , so that the condition X ⊃ {xk | k ∈ N} P-a.s. required in Theo-
rem 3.21 is clearly fulfilled. This is the case when F is strongly convex or when
f is quadratic and g is the indicator function of a polytope (see Remark 4.17(iv)
in [91]). More often, for general convex objectives, the error bound condition
(3.4.1) is satisfied on sublevel sets of F (see [91, Remark 4.18]). Therefore, it
is important to find conditions ensuring that the sequence (xk)k∈N remains in
a sublevel set. The next results address this issue.

We first give an analogue of Lemma 3.14.

Lemma 3.23. Let (xk)k∈N be the sequence generated by Algorithm 3.1. Then, for every
k ∈ N,

⟨∇f(xk)−∇f(x̂k), xk+1 − xk⟩ ≤ τLres∥xk+1 − xk∥2 + α̃k − α̃k+1,

with α̃k = (Lres/2)
∑k−1

h=k−τ (h− (k − τ) + 1)∥xh+1 − xh∥2.

Proof. Let k ∈ N. We have, from Cauchy-Schwarz inequality, the Young inequality and
Lemma 3.2.5, that

⟨∇f(xk)−∇f(x̂k),xk+1 − xk⟩

≤ Lres

∑
h∈J(k)

∥xh+1 − xh∥∥xk+1 − xk∥

≤ 1

2

L2
res

s

(∑
h∈J(k)

∥xh+1 − xh∥
)2

+ s∥xk+1 − xk∥2

≤ 1

2

[
τL2

res

s

(
k−1∑

h=k−τ
∥xh+1 − xh∥2

)
+ s∥xk+1 − xk∥2

]

=
s

2
∥xk+1 − xk∥2 + τL2

res

2s

k−1∑
h=k−τ

∥xh+1 − xh∥2.

Using the same decomposition of the last term as in Lemma 3.14, we get

⟨∇f(xk)−∇f(x̂k),xk+1 − xk⟩

≤ s

2
∥xk+1 − xk∥2 + τL2

res

2s

k−1∑
h=k−τ

(h− (k − τ) + 1)∥xh+1 − xh∥2

− τL2
res

2s

k∑
h=k−τ+1

(h− (k − τ))∥xh+1 − xh∥2

+
τ2L2

res

2s
∥xk+1 − xk∥2.

3.4. LINEAR CONVERGENCE UNDER ERROR BOUND CONDITION 41

So taking

α̃k =
τL2

res

2s

k−1∑
h=k−τ

(h− (k − τ) + 1)∥xh+1 − xh∥2,

we get

⟨∇f(xk)−∇f(x̂k), x̄k+1 − xk⟩ ≤
(
s

2
+
τ2L2

res

2s

)
∥x̄k+1 − xk∥2 + α̃k − α̃k+1.

By minimizing s 7→ (s/2 + τ2L2
res/(2s)), we find s = τLres. We then obtain

⟨∇f(xk)−∇f(x̂k), xk+1 − xk⟩ ≤ τLres∥xk+1 − xk∥2 + α̃k − α̃k+1,

and the statement follows.

Proposition 3.24

Let (xk)k∈N be the sequence generated by Algorithm 3.1. Then, for every k ∈ N,(
1

γik
−Lik

2
−τLres

)
∥xk+1−xk∥2 ≤ F (xk)+α̃k−

(
F (xk+1)+α̃k+1

)
P-a.s., (3.4.9)

where α̃k = (Lres/2)
∑k−1

h=k−τ (h− (k − τ) + 1)∥xh+1 − xh∥2.

Proof. Using Lemma 3.23 in equation (3.8.3), we have

F (xk+1) ≤ F (xk) + ⟨∇ikf(x
k)−∇ikf(x̂

k), x̄k+1
ik

− xkik⟩

−
(

1

γik
− Lik

2

)
|x̄k+1
ik

− xkik |
2

= F (xk) + ⟨∇f(xk)−∇f(x̂k),xk+1 − xk⟩

−
(

1

γik
− Lik

2

)
∥xk+1 − xk∥2

≤ F (xk) + α̃k − α̃k+1 −
(

1

γik
− Lik

2
− τLres

)
∥xk+1 − xk∥2.

So the statement follows.

Corollary 3.25: Let (xk)k∈N be generated by Algorithm 3.1 with the γi’s satisfying
the following stepsize rule

(∀ i ∈ [m]) γi <
2

Li + 2τLres
. (3.4.10)

Then

(∀ k ∈ N) F (xk) ≤ F (x0) P-a.s. (3.4.11)

So if the error bound condition (3.4.1) holds on the sublevel set X = {F ≤ F (x0)},
then the assumptions of Theorem 3.21 are met.

Proof. The left-hand side in (3.4.9) is positive and hence (F (xk) + α̃k)k∈N is decreasing
P-a.s. Therefore, we have, for every k ∈ N

F (xk) ≤ F (xk) + α̃k ≤ F (x0) + α̃0 = F (x0).

42 CHAPTER 3

Remark 3.26: The rule (3.4.10) yields stepsizes possibly smaller than the ones given
in Theorem 3.11, which requires γi < 2/(Li + 2τLrespmax/

√
pmin). Indeed, this hap-

pens when pmax/
√
pmin < 1. For instance if the distribution is uniform, we have

pmax/
√
pmin = 1/

√
m < 1 whenever m ≥ 2. On the bright side, there exists dis-

tributions for which pmax/
√
pmin > 1. For example, in the case of two coordinates,

if the selection probability follows a Bernoulli distribution with p = 0.7. In that
case, pmax/

√
pmin = 0.7/

√
0.3 > 1.278 > 1. When m > 2, another example is the

multinoulli distribution with pmax > 0.1, pmin = 0.01 and
∑m

i=1 pi = 1.

3.5 Applications

Here we present two problems where Algorithm 3.1 can be useful.

3.5.1 The Lasso problem
We start with the Lasso problem [104], also known as basis pursuit [22]. It is a least-
squares regression problem with an ℓ1 regularizer which favors sparse solutions. More
precisely, given A ∈ Rn×m and b ∈ Rn, one aims at solving the following problem

minimize
x∈Rm

1

2
∥Ax− b∥22 + λ∥x∥1 (λ > 0) . (3.5.1)

We clearly fall in the framework of problem (3.1.1) with f(x) = (1/2)∥Ax − b∥22 and
gi(xi) = λ|xi|. The assumptions A1, A2, A3 and A4 are also satisfied. In particular, here
Li = ∥ai∥2, where ai is the i-th column of A, Lres = maxi ∥A⊺A·i∥2, with A⊺A·i the i-th
column of A⊺A, and F = f + g attains its minimum.

The Lasso technique is used in many fields, especially for high-dimensional problems
– among others it is worth mentioning statistics, signal processing, and inverse problems;
see [9, 11, 32, 59, 99, 108] and references therein. Since there is no closed form solu-
tion for this problem, many iterative algorithms have been proposed to solve it: forward-
backward, accelerated (proximal) gradient descent, (proximal) block coordinate descent,
etc. [9, 28, 40, 41, 77, 110]. In the same vein, applying Algorithm 3.1 to the Lasso
problem (3.5.1) yields the iterative scheme:

for n = 0, 1, . . . for i = 1, . . . ,m⌊
xk+1
i =

{
softλγi

(
xki − γia

⊺
i (Ax

k−dk − b)
)

if i = ik

xki if i ̸= ik,

(3.5.2)

where, for every ρ > 0, softρ : R → R is the soft thresholding operator (with threshold ρ)
[92]. Thanks to Theorem 3.11 we know that the iterates (xk)k∈N generated are weakly
convergent and the function values have a convergence rate of o(1/k). On top of that the
cost function of the Lasso problem (3.5.1) satisfies the error bound condition (3.4.1) on
its sublevel sets [109, Theorem 2]. So, following Corollary 3.25 and Theorem 3.21, the
iterates converge strongly (a.s.) and linearly in mean, whenever γi < 2/ (Li + 2τLres), for
all i ∈ [m].

3.5.2 Linear convergence of dual proximal gradient method
We consider the problem

minimize
x∈H

m∑
i=1

ϕi (Aix) + h(x), (3.5.3)

3.5. APPLICATIONS 43

where, for all i ∈ [m],Ai : H → Gi is a linear operator between Hilbert spaces, ϕi : Gi →
]−∞,+∞] is proper convex and lower semicontinuous, and h : H →]−∞,+∞] is proper
lower semicontinuous and σ-strongly convex (σ > 0). The first term of the objective
function may represent the empirical data loss and the second term the regularizer. This
problem arises in many applications in machine learning, signal processing and statisti-
cal estimation, and is commonly called regularized empirical risk minimization [96]. It
includes, for instance, ridge regression and (soft margin) support vector machines [96],
more generally Tikhonov regularization [62, Section 5.3].

In the following we apply Algorithm 3.1 to the dual of problem (3.5.3). Below we
provide details. Set G =

⊕m
i=1 Gi and u = (u1, u2, . . . , um). Then, the dual of problem

(3.5.3) is

minimize
u∈G

F (u) = h∗
(
−

m∑
i=1

A∗
i ui

)
+

m∑
i=1

ϕ∗i (ui), (3.5.4)

where, A∗
i is the adjoint operator of Ai h∗ and ϕ∗i are the Fenchel conjugates of h and ϕi

respectively. The link between the dual variable u and the primal variable x is given by the
rule u 7→ ∇h∗(−

∑m
i=1 A

∗
i ui). Since h∗ is (1/σ)-Lipschitz smooth, see Proposition 1.19, the

dual problem above is in the form of problem (3.1.1). Thus, Algorithm 3.1 applied to the
dual problem (3.5.4) gives

for k = 0, 1, . . .
for i = 1, . . . ,m uk+1

i =

proxγikϕ∗ik

(
ukik + γikAik∇h∗(−

∑m
j=1 A

∗
ju
k−dkj
j)

)
if i = ik

uki if i ̸= ik,

(3.5.5)

Suppose that ∇h∗ = B is a linear operator and that the delay vector dk = (dk1, · · · , dkm) is
uniform, that is, dki = dkj = dk ∈ N. Then, using the primal variable, the KKT condition
xk = ∇h∗(−

∑m
j=1 A

∗
ju
k
j) = −

∑m
j=1 BA

∗
ju
k
j , and the fact that uk+1 and uk differ only on

the ik-component, the algorithm becomes

for k = 0, 1, . . .
for i = 1, . . . ,m
uk+1
i =

{
proxγikϕ∗ik

(
ukik + γikAikx

k−dk
)

if i = ik

uki if i ̸= ik.

xk+1 = xk − BA∗
ik
(uk+1
ik

− ukik).

(3.5.6)

The above algorithm requires a lock during the update of the primal variable x. On the
contrary, the update of the dual variable u is completely asynchronous without any lock
as in the setting we studied in this chapter. To get a better understanding of this aspect,
we will expose a concrete example: the ridge regression.

Example: Ridge regression

The ridge regression is the following regularized least squares problem.

minimize
w∈H

1

λm

m∑
i=1

(yi − ⟨w, xi⟩)2 +
1

2
∥w∥2. (3.5.7)

Its dual problem is

minimize
u∈Rm

1

2
⟨(K+ λmIdm)u,u⟩ − ⟨y,u⟩,

44 CHAPTER 3

where K = XX∗ and X : H → Rm, with Xw = (⟨w, xi⟩)1≤i≤m. We remark that, in this
situation, Ai = ⟨·, xi⟩, A∗

i = xi and B = Id. Let dk = (dk, dk, · · · , dk). With wk = X∗uk and
considering that the non smooth part g is null, the algorithm is given by

for k = 0, 1, . . .
for i = 1, . . . ,m
uk+1
i =

{
ukik − γik

(
⟨xik ,wk−dk⟩+ λmuk−dk

ik
− yik

)
if i = ik

uki if i ̸= ik.

wk+1 = wk − γikxik
(
uk+1
ik

− ukik
)
.

(3.5.8)

Remark 3.27: Now we will compare the above dual asynchronous algorithm to the
asynchronous stochastic gradient descent (ASGD) [1, 88]. We note that (3.5.8)
yields

wk+1 = wk − γikxik
(
uk+1
ik

− ukik
)

= wk − γik
(
⟨xik ,w

k−dk⟩xik + λmuk−dk

ik
xik − yikxik

)
.

Instead, applying asynchronous SGD to the primal problem (3.5.7) multiply by λm,
we get

wk+1 = wk − γ′k
(
⟨xik ,w

k−dk⟩xik + λmwk−dk − yikxik
)
.

We see that the only difference is the second term inside the parentheses in both
updates. Indeed, the term wk−dk = X∗uk−dk =

∑m
i=1 u

k−dk

i xi in ASGD is replaced by
only one summand uk−dk

ik
xik in our algorithm. However, a major difference between

the two approaches lies in the way the stepsize is set. Indeed, in ASGD, the stepsize
γ′k is chosen with respect to the operator norm of K+λmId i.e., the Lipschitz constant
of the full gradient of the primal objective function, see [1, Theorem 1]. By contrast,
in algorithm (3.5.8), for all i ∈ [m], the stepsizes γki are chosen with respect to
the Lipschitz constant of the partial derivatives of the dual objective function i.e.,
Ki,i + λm. Not only the latter are easier to compute, they also allow for possibly
longer steps along the coordinates.

3.6 Experiments

In this section, we will present some experiments with the purpose of assessing our theo-
retical findings and making comparison with related results in the literature. All the codes
are available on GitHub1.

We coded the mathematical model of asynchronicity in (3.1.2). At each iteration we
compute the forward step using gradients that are possibly outdated. The delay vector
components are a priori chosen according to a uniform distribution on {0, 1, . . . , τ}. The
block coordinates are updated with a uniform distribution independent of the delay vector.
We considered three kinds of experiments: in the first one we did a speedup test for our
algorithm on the Lasso problem. This allows to check whether the speed of convergence
increases linearly with the number of machines used. Then, we considered a comparison
with the synchronous version of the algorithm in order to show the advantage of the
asynchronous implementation. Finally, in the third group of experiments we compared
our algorithm with those by Liu et al. [66] and Cannelli et al. [20].

1https://github.com/cheiktraore/Codes_Paper_Asc_Coord_Desc

3.6. EXPERIMENTS 45

Figure 3.1: The plots showed the speedup obtain by Algorithm 1.1 compared to the ideal
speedup for different number of blocks. The shaded zones illustrate the standard deviation
of the results over 10 trials.

3.6.1 Speedup test

In this section we consider the Lasso problem (3.5.1) withm ∈ {500, 1000, 2000, 8000} and
n = 100. λ is chosen small enough so that the minimizer x∗ has non-zero components.
For more flexibility, we used synthetic data, which were generated using the function
MAKE_CORRELATED_DATA of the python library CELER. This function creates a matrix A
with columns generated according to the Autoregressive (AR) model2. Then b is generated
as b = Aw + ϵ, where ϵ is a Gaussian random vector, with zero mean and variance equal
to the identity, such that the signal to noise ration (SNR) is 3 and w is a vector with 1%
of nonzero entries. The nonzero blocks of w are chosen uniformly and their entries are
generated according to the standard normal distribution. As in [20, 66], we make the
assumption that τ is proportional to the number of machines. Since we use 10 cores, we
fix τ = 10 like in [65]. For a fixed data, we run the algorithm 10 times and average it.
Similarly to [20, 66], in our experiment the speedup gets better when we increase the
number of blocks, see Figure 3.1. This can be explained by the fact that the algorithm has
to run long enough in order to minimize the cost of parallelization — the initialization
cost, the mandatory locks in order to avoid data racing, etc. Also, if there are more
blocks, the probability of two machines having to write to the same block at the same time
is reduced and so is the number of locks. All these observations align with the known
fact that the more there are cores, the more the problem should be complex to see good
speedup.

2The code is available at https://github.com/mathurinm/celer/blob/501788e/celer/datasets/simulated.py#L10

46 CHAPTER 3

Figure 3.2: Comparison of Algorithm 3.1 to its synchronous counterpart. Both algorithms
were run for a fix amount of seconds. The iteration count in the figure is the normalized
one.

3.6.2 Comparison with the synchronous version
We compared Algorithm 3.1 to its synchronous counterpart in the Lasso case. The data,
as well as the parameters, is generated as in the speedup experiment. The stepsize of
the synchronous algorithm is set as suggested in [91] for a non-sparse matrix A. We run
both algorithms for 120 seconds and compare the distances of their function values to the
minimum. As expected, Algorithm 3.1 is faster; see Figure 3.2.

3.6.3 Comparison with other asynchronous algorithms
In this section we illustrate the results of the comparison with the algorithms proposed in
[66] and [20]. As for [20], we set (in the notation of the chapter) the relaxation parameter
γ = 1 and cf̃ = 2β so that

xk+1
i =

{
prox(1/2β)gi

(
x
k−dki
i − (1/2β)∇if(x

k−dk)
)

if i = ik

xki if i ̸= ik.

Then, according to Theorem 1 in [20], we choose 2β > Lf (1 + δ2/2) where δ = τ is the
maximum delay. We note that this model is slightly different from ours since the delay is
present not only in the gradient.

In [66], the same algorithm as (3.1.2) is considered, but with a stepsize γ which is the
same for all the blocks. In our comparisons, we choose the step according to the conditions
required by the main Theorem 4.1 in [66], since the hypotheses of Corollary 4.2 are not
satisfied for our datasets3, see the discussion in Remark 3.12 (vi). If τ is the maximum
delay, Theorem 4.1 in [66] requires the following conditions on the stepsize:

γ <

√
n(1− ρ−1)− 4

4(1 + θ)Lres/L′
max

with θ =
ρ(τ+1)/2 − ρ1/2

ρ1/2 − 1
,

which only makes sense if the right hand side is strictly positive, so when n > 16 and
ρ > 1+4/

√
n

1−16/n (instead of ρ > 1 + 4/
√
n as claimed in [66]). So, in the experiments, we set

ρ > 1+4/
√
n

1−16/n . This leads in general to very small stepsizes, as we will further discuss in the
next section.

3For the two datasets we used, YEARPREDICTIONMSD.T and SPLICE.T, we have that
√
m/(4eΛ) is equal to

0.62084123 0.00459623 respectively, so that condition (3.3.2) is never satisfied by any nonnegative integer τ .

3.6. EXPERIMENTS 47

Figure 3.3: The plots show the behavior of F (xk) − F∗ for the 3 algorithms applied to a
lasso loss with different values of τ : 5, 10, 15, 20.

Lasso problem

In this section we consider the Lasso problem (3.5.1) with m = 90, n = 51630, and
λ = 0.01. We use the data YEARPREDICTIONMSD.T from LIBSVM4 to generate the matrix
A. Before showing the results, we briefly comment on the experimental set-up. As shown
in Section 3.5.1, in this case Li = ∥A·i∥22 and Lres = maxi ∥A⊺A·i∥2. In [20], Lf = Lres and
in [66] L′

max = maxi ∥A⊺A·i∥∞.
Looking at the results, we see that our algorithm outperforms those in [66] and [20],

see Figure 3.3. This difference is due to the fact that our stepsize is bigger than the other
two. Indeed, in [66] and [20] the stepsizes have a worse dependence on the maximum
delay τ (inverse quadratically in [20] and exponentially in [66]), which ultimately shorten
the stepsizes. Also, in both [66] and [20] the stepsize is the same for all the blocks, so the
algorithm is more sensitive to the conditioning of the problem. An overall comparison of
the effect of τ on the stepsize is shown in Figure 3.4.

Logistic regression

For another comparison, next we consider the ℓ1 regularized logistic loss:

F (x) =
1

n

n∑
i=1

log(1 + exp{−bi⟨ai,x⟩}) + λ∥x∥1. (3.6.1)

For this experiment we use the data SPLICE.T from LIBSVM5 with m = 60, n = 2175, and
λ = 0.01. Let A ∈ Rm×n be the matrix with columns the ai’s (i ∈ [n]). We denote by ∥ · ∥,
∥ · ∥∞, ∥ · ∥F , the spectral norm, the infinity norm, and the Frobenius norm of matrices,
respectively. The relevant constants for the stepsizes are

4 https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
5https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

48 CHAPTER 3

Figure 3.4: This figure shows how the minimum of our stepsizes fares against the two
others when τ increases on a lasso problem.

• Lres =
1
n∥A∥maxj ∥Aj·∥2 for our algorithm and [66],

• L′
max = 1

n∥A∥∞maxj ∥Aj·∥∞ for [66],

• Lj =
1
n∥Aj·∥

2
2, j ∈ [m], for our algorithm, where Aj· is the j-th row of A.

• Lf = 1
n∥A∥F maxj ∥Aj·∥2 for [20].

So, the stepsizes range from about 1.1191 ∗ 10−3 to 7.5164 ∗ 10−3 for [20], 5.6537 ∗
10−8 to 2.1571 ∗ 10−10 for [66], and 2.2605 ∗ 10−2 to 6.1590 ∗ 10−3 for our algorithm. The
results show the same trend as in the Lasso case, actually with even larger differences, see
Figure 3.5.

3.6. EXPERIMENTS 49

Figure 3.5: The plots show the behavior of F (xk) − F∗ for the 3 algorithms applied to a
regularized logistic loss for different values of τ : 5, 10, 15, 20.

Appendix for Chapter 3

3.7 Proofs of the auxiliary Lemmas in Section 3.2

In this section, for reader’s convenience, we provide detailed proofs of the Lemmas pre-
sented in Section 3.2, even though they are mostly not original. They are adapted from or
can be found, e.g., in [66, 91].

Proof of Lemma 3.6. Let k ∈ N. Since, for every i ∈ [m], dki ≤ min{k, τ}, we have

xk−dk − xk =

m∑
i=1

Ji(x
k−dki
i − xki)

=
m∑
i=1

Ji

(k−1∑
h=k−dki

(xhi − xh+1
i)

)

=

m∑
i=1

Ji

(k−1∑
h=k−τ

δh,i(x
h
i − xh+1

i)

)

=
k−1∑

h=k−τ

m∑
i=1

Ji
(
δh,i(x

h
i − xh+1

i)
)
. (3.7.1)

where δh,i = 1 if h ≥ k−dki and δh,i = 0 if h < k−dki . Note that for any h ∈ {k−τ, . . . , k−
1}, in the sum

m∑
i=1

Ji
(
δh,i(x

h
i − xh+1

i)
)

at most one summand is different from zero, because the difference between xh and xh+1

is only in the ih-th component. So

m∑
i=1

Ji
(
δh,i(x

h
i − xh+1

i)
)
=

{
Jih(x

h
ih
− xh+1

ih
) = xh − xh+1 if h ≥ k − dkih

0 if h < k − dkih .

Therefore setting J(k) =
{
h ∈ {k−τ, . . . , k−1} |h ≥ k−dkih

}
, (3.7.1) yields (3.2.8). Note

that, since ih is a random variable, J(k) is a random set in the sense that J(k)(ω) =
{
h ∈

{k − τ, . . . , k − 1} |h ≥ k − dkih(ω)
}

.

Proof of Lemma 3.7. Let k ∈ N, let p = card(J(k)), and let (hj)1≤j≤p be the elements of
J(k) ordered in (strictly) increasing order. Then, from Lemma 3.6 we have

xk − x̂k =

p∑
j=1

(xhj+1 − xhj). (3.7.2)

50

3.7. PROOFS OF THE AUXILIARY LEMMAS IN SECTION 3.2 51

Let’s set, for each t ∈ {0, . . . , p}

x̂k,t = x̂k +

t∑
j=1

(xhj+1 − xhj).

Then it follows

x̂k,0 = x̂k, x̂k,p = xk, and ∀ t ≥ 1 x̂k,t − x̂k,t−1 = xht+1 − xht .

Therefore

xk − x̂k =

p∑
t=1

(x̂k,t − x̂k,t−1)

and x̂k,t, x̂k,t−1 differ only in the value of a component. Thus

∥∇f(xk)−∇f(x̂k)∥ =
∥∥∥ p∑
t=1

∇f(x̂k,t)−∇f(x̂k,t−1)
∥∥∥

≤
p∑
t=1

∥∇f(x̂k,t)−∇f(x̂k,t−1)∥

≤ Lres

p∑
t=1

∥x̂k,t − x̂k,t−1∥

= Lres

p∑
t=1

∥xht+1 − xht∥

= Lres

∑
h∈J(k)

∥xh+1 − xh∥.

from which the result follows.

Proof of Lemma 3.9. Let k ∈ N and x ∈ H. Then

⟨∇f(x̂k), x− xk⟩ = ⟨∇f(x̂k), x− x̂k⟩+ ⟨∇f(x̂k), x̂k − xk⟩

= ⟨∇f(x̂k), x− x̂k⟩+
p−1∑
t=0

⟨∇f(x̂k), x̂k,t − x̂k,t+1⟩

= ⟨∇f(x̂k), x− x̂k⟩

+

p−1∑
t=0

⟨∇f(x̂k,t), x̂k,t − x̂k,t+1⟩+ ⟨∇f(x̂k)−∇f(x̂k,t), x̂k,t − x̂k,t+1⟩.

Thanks to the convexity of f and (3.2.7), it follows

⟨∇f(x̂k), x− xk⟩ ≤ f(x)− f(x̂k) +

p−1∑
t=0

f(x̂k,t)− f(x̂k,t+1) +
Lmax

2
∥x̂k,t − x̂k,t+1∥2

+

p−1∑
t=0

⟨∇f(x̂k)−∇f(x̂k,t), x̂k,t − x̂k,t+1⟩

= f(x)− f(xk) +
Lmax

2

p−1∑
t=0

∥x̂k,t − x̂k,t+1∥2

52 CHAPTER 3

+

p−1∑
t=0

t−1∑
s=0

⟨∇f(x̂k,s)−∇f(x̂k,s+1), x̂k,t − x̂k,t+1⟩

≤ f(x)− f(xk) +
Lmax

2

p−1∑
t=0

∥x̂k,t − x̂k,t+1∥2

+ Lres

p−1∑
t=0

t−1∑
s=0

∥x̂k,s − x̂k,s+1∥∥x̂k,t − x̂k,t+1∥.

Using the equality of the square of sum, Holder inequality and Lmax ≤ Lres, we finally get

⟨∇f(x̂k), x− xk⟩ ≤ f(x)− f(xk) +
Lmax

2

p−1∑
t=0

∥x̂k,t − x̂k,t+1∥2

+
Lres

2

[(p−1∑
t=0

∥x̂k,t − x̂k,t+1∥
)2

−
p−1∑
t=0

∥x̂k,t − x̂k,t+1∥2
]

= f(x)− f(xk) +
Lres

2

(p−1∑
t=0

∥x̂k,t − x̂k,t+1∥
)2

+

(
Lmax

2
− Lres

2

) p−1∑
t=0

∥x̂k,t − x̂k,t+1∥2

≤ f(x)− f(xk) +
τLres

2

∑
h∈J(k)

∥xh − xh+1∥2.

The statement follows.

Proof of Lemma 3.10. Let z ∈ H. It follows from the definition of x+ that x−x+−∇φ(x̂) ∈
∂ψ (x+) . Therefore, ψ(z) ≥ ψ (x+) + ⟨x− x+ −∇φ(x̂), z− x+⟩ , hence〈

x− x+, z− x+
〉
≤ ψ(z)− ψ

(
x+
)
+
〈
∇φ(x̂), z− x+

〉
.

Then,

⟨x− x+, z− x⟩+ ⟨x− x+, x− x+⟩ ≤ ψ(z)− ψ (x+) + ⟨∇φ(x̂), z− x⟩+ ⟨∇φ(x̂), x− x+⟩ .

Rearranging the terms the statement follows.

3.8 Proofs of Section 3.3

Proof of Lemma 3.14. Let k ∈ N. We have, from Cauchy-Schwarz inequality, the Young
inequality and Remark 3.8, that

⟨∇f(xk)−∇f(x̂k), x̄k+1 − xk⟩V

≤ LV
res

∑
h∈J(k)

∥xh+1 − xh∥V∥x̄k+1 − xk∥V

≤ 1

2

(LV
res)

2

s

(∑
h∈J(k)

∥xh+1 − xh∥V
)2

+ s∥x̄k+1 − xk∥2V

≤ 1

2

[
τ(LV

res)
2

s

(
k−1∑

h=k−τ
∥xh+1 − xh∥2V

)
+ s∥x̄k+1 − xk∥2V

]

3.8. PROOFS OF SECTION 3.3 53

=
s

2
∥x̄k+1 − xk∥2V +

τ(LV
res)

2

2s

k−1∑
h=k−τ

∥xh+1 − xh∥2V,

Now, thanks to a decomposition of the last term by Fact 3.5, we obtain

⟨∇f(xk)−∇f(x̂k), x̄k+1 − xk⟩V

≤ s

2
∥x̄k+1 − xk∥2V +

τ(LV
res)

2

2s

k−1∑
h=k−τ

(h− (k − τ) + 1)∥xh+1 − xh∥2V

− τ(LV
res)

2

2s

k∑
h=k−τ+1

(h− (k − τ))∥xh+1 − xh∥2V

+
τ2(LV

res)
2

2s
∥xk+1 − xk∥2V.

We recall that ∥xk+1 − xk∥2V = pik |x̄
k+1
ik

− xkik |
2. So taking

αk =
τ(LV

res)
2

2s

k−1∑
h=k−τ

(h− (k − τ) + 1)∥xh+1 − xh∥2V,

we get

E
[
⟨∇f(xk)−∇f(x̂k), x̄k+1 − xk⟩V

∣∣ i0, . . . , ik−1

]
≤ s

2
∥x̄k+1 − xk∥2V +

τ2(LV
res)

2

2s

m∑
i=0

p2i |x̄ik+1 − xki |2 + αk − E
[
αk+1

∣∣ i0, . . . , ik−1

]
Meaning

⟨∇f(xk)−∇f(x̂k), x̄k+1 − xk⟩V

≤
m∑
i=0

pi

(
s

2
+
τ2(LV

res)
2

2s
pi

)
|x̄ik+1 − xki |2 + αk − E

[
αk+1

∣∣ i0, . . . , ik−1

]
≤

m∑
i=0

pi

(
s

2
+
τ2(LV

res)
2

2s
pmax

)
|x̄ik+1 − xki |2 + αk − E

[
αk+1

∣∣ i0, . . . , ik−1

]
.

By minimizing s 7→
(
s

2
+
τ2(LV

res)
2

2s
pmax

)
, we find s = τLV

res
√
pmax. We then get

⟨∇f(xk)−∇f(x̂k), x̄k+1 − xk⟩V

≤ τLV
res

√
pmax

m∑
i=0

pi|x̄ik+1 − xki |2 + αk − E
[
αk+1

∣∣ i0, . . . , ik−1

]
,

and αk =
LV
res

2
√
pmax

k−1∑
h=k−τ

(h− (k − τ) + 1)∥xh+1 − xh∥2V.

Proof of Lemma 3.15. We have

∥xk+1−x∥2W =
m∑
i=1

1

piγi
|xk+1
i −xi|2 =

1

pikγik
|x̄k+1
ik

−xik |
2+∥xk−x∥2W− 1

pikγik
|xkik−xik |

2.

(3.8.1)

54 CHAPTER 3

Thus, taking the conditional expectation we have

E[∥xk+1 − x∥2W | i0, . . . , ik−1] = ∥x̄k+1 − x∥2Γ−1 + ∥xk − x∥2W − ∥xk − x∥2Γ−1 (3.8.2)

and (3.3.4) follows. The second equation follows from (3.3.4), by choosing x = xk.

Proof of Proposition 3.13. Let k ∈ N. We have from the descent lemma along the ik-th
block-coordinate,

F (xk+1) ≤ f(xk) + ⟨∇ikf(x
k), x̄k+1

ik
− xkik⟩+

Lik
2

|x̄k+1
ik

− xkik |
2 +

n∑
i=1

gi(x
k+1
i)

= f(xk) + ⟨∇ikf(x
k), x̄k+1

ik
− xkik⟩+

Lik
2

|x̄k+1
ik

− xkik |
2 +

(
gik(x

k+1
ik

) +

n∑
i ̸=ik

gi(x
k
i)
)

= f(xk) + ⟨∇ikf(x
k), x̄k+1

ik
− xkik⟩+

Lik
2

|x̄k+1
ik

− xkik |
2

+
(
gik(x

k+1
ik

)− gik(x
k
ik
) + g(xk)

)
= F (xk) + ⟨∇ikf(x

k), x̄k+1
ik

− xkik⟩+
Lik
2

|x̄k+1
ik

− xkik |
2 +

(
gik(x̄

k+1
ik

)− gik(x
k
ik
)
)

= F (xk) + ⟨∇ikf(x
k)−∇ikf(x̂

k), x̄k+1
ik

− xkik⟩+
Lik
2

|x̄k+1
ik

− xkik |
2

+
(
⟨∇ikf(x̂

k), x̄k+1
ik

− xkik⟩+ gik(x̄
k+1
ik

)− gik(x
k
ik
)
)
.

From (3.2.5), we can write that

F (xk+1) ≤ F (xk) + ⟨∇ikf(x
k)−∇ikf(x̂

k), x̄k+1
ik

− xkik⟩ −
(

1

γik
− Lik

2

)
|x̄k+1
ik

− xkik |
2

(3.8.3)

By taking the conditional expectation and using Fact 3.3, it follows:

E
[
F (xk+1)

∣∣ i0, . . . , ik−1

]
≤ F (xk) + E

[
⟨∇ikf(x

k)−∇ikf(x̂
k), x̄k+1

ik
− xkik⟩

∣∣ i0, . . . , ik−1

]
−

m∑
i=0

pi
(1

γi
− Li

2

)
|x̄k+1
i − xki |2

= F (xk) +
m∑
i=0

pi⟨∇if(x
k)−∇if(x̂

k), x̄k+1
i − xki ⟩

−
m∑
i=0

pi
(1

γi
− Li

2

)
|x̄k+1
i − xki |2

= F (xk) + ⟨∇f(xk)−∇f(x̂k), x̄k+1 − xk⟩V

−
m∑
i=0

pi
(1

γi
− Li

2

)
|x̄k+1
i − xki |2. (3.8.4)

From Lemma 3.14, we have

⟨∇f(xk)−∇f(x̂k), x̄k+1 − xk⟩V

≤ τLV
res

√
pmax

m∑
i=0

pi|x̄ik+1 − xki |2 + αk − E
[
αk+1

∣∣ i0, . . . , ik−1

]
,

3.8. PROOFS OF SECTION 3.3 55

with αk =
LV
res

2
√
pmax

k−1∑
h=k−τ

(h− (k− τ)+1)∥xh+1−xh∥2V. We then plug this result in (3.8.4)

obtaining

m∑
i=0

pi
(1

γi
− Li

2

)
|x̄k+1
i − xki |2 ≤ F (xk) + αk + τLV

res

√
pmax

m∑
i=0

pi|x̄ik+1 − xki |2

− E
[
F (xk+1) + αk+1

∣∣ i0, . . . , ik−1

]
.

Hence

m∑
i=0

pi

(
1

γi
− Li

2
− τLV

res

√
pmax

)
|x̄k+1
i − xki |2 ≤ F (xk) + αk − E

[
F (xk+1) + αk+1

∣∣ i0, . . . , ik−1

]
.

Since δ < 2, recalling (3.3.1), we have, for all i ∈ [m],

(
1

γi
− Li

2
− τLV

res

√
pmax

)
=

1

2γi
(2− Liγi − 2γiτL

V
res

√
pmax) ≥

1

2γi
(2− δ) > 0.

Therefore the statement follows.

Proof of Proposition 3.16. Let k ∈ N and x ∈ H. Since ⟨∇f(x̂k), x−xk⟩ = ⟨∇Γ−1
f(x̂k), x−

xk⟩Γ−1 and x̄k+1 = proxΓ
−1

g

(
xk −∇Γ−1

f(x̂k)
)
, we derive from Lemma 3.10 above written

in weighted norm that

⟨xk − x̄k+1, x− xk⟩Γ−1 ≤ g(x)− g(xk) + ⟨∇f(x̂k), x− xk⟩
+ g(xk)− g(x̄k+1) + ⟨∇f(x̂k),xk − x̄k+1⟩
− ∥xk − x̄k+1∥2Γ−1 . (3.8.5)

From Lemma 3.9, we have

⟨∇f(x̂k), x− xk⟩ ≤ f(x)− f(xk) +
τLres

2

∑
h∈J(k)

∥xh − xh+1∥2.

So (3.8.5) becomes

⟨xk − x̄k+1, x− xk⟩Γ−1 ≤ F (x)− F (xk) +
τLres

2

∑
h∈J(k)

∥xh − xh+1∥2

+ g(xk)− g(x̄k+1) + ⟨∇f(x̂k),xk − x̄k+1⟩

− ∥xk − x̄k+1∥2Γ−1 . (3.8.6)

Next, recalling that xk and xk+1 differs only in the ik-th component, we have

g(xk)− g(x̄k+1) + ⟨∇f(x̂k),xk − x̄k+1⟩

= E

[
m∑
i=1

1

pi

(
gi(x

k
i)− gi(x

k+1
i) + ⟨∇if(x̂

k), xki − xk+1
i ⟩

)
| i0, . . . , ik−1

]

56 CHAPTER 3

Moreover,

m∑
i=1

1

pi

(
gi(x

k
i)− gi(x

k+1
i) + ⟨∇if(x̂

k), xki − xk+1
i ⟩

)
=

1

pmin

(
g(xk)− g(xk+1) + ⟨∇f(x̂k),xk − xk+1⟩

)
−

m∑
i=1

(
1

pmin
− 1

pi︸ ︷︷ ︸
≥0

)
(
gi(x

k
i)− gi(x

k+1
i) + ⟨∇if(x̂

k), xki − xk+1
i ⟩

)

≤ 1

pmin

(
g(xk)− g(xk+1) + ⟨∇f(x̂k),xk − xk+1⟩

)
−
(

1

pmin
− 1

pik

)
1

γik
|∆k

ik
|2

where in the last inequality we used that

−
(
gik(x

k
ik
)− gik(x

k+1
ik

) + ⟨∇ikf(x̂
k), xkik − xk+1

ik
⟩
)
≤ − 1

γik
|∆k

ik
|2,

which was derived from (3.2.5). So

g(xk)− g(x̄k+1) + ⟨∇f(x̂k),xk − x̄k+1⟩

≤ 1

pmin
E
[
g(xk)− g(xk+1) + ⟨∇f(x̂k),xk − xk+1⟩

∣∣ i0, . . . , ik−1

]
− 1

pmin

m∑
i=1

pi
γi
|∆k

i |2 + ∥xk − x̄k+1∥2Γ−1 .

Now, by Lemma 3.14 and the block-coordinate descent lemma (3.2.6), we have

E[⟨∇f(x̂k),xk − xk+1⟩ | i0, . . . , ik−1]

≤ E
[
⟨∇f(x̂k)−∇f(xk),xk − xk+1⟩

∣∣ i0, . . . , ik−1

]
+ E

[
⟨∇f(xk),xk − xk+1⟩

∣∣ i0, . . . , ik−1

]
= ⟨∇f(x̂k)−∇f(xk),xk − x̄k+1⟩V + E[⟨∇f(xk),xk − xk+1⟩ | i0, . . . , ik−1]

≤ τLV
res

√
pmax

m∑
i=0

pi|x̄ik+1 − xki |2 + αk − E
[
αk+1

∣∣ i0, . . . , ik−1

]
+ E

[
f(xk)− f(xk+1) +

Lik
2

|∆k
ik
|2
∣∣∣ i0, . . . , ik−1

]
,

where αk = LV
res/(2

√
pmax)

∑k−1
h=k−τ (h− (k− τ)+ 1)∥xh+1−xh∥2V for all k ∈ N. Therefore

g(xk)− g(x̄k+1) + ⟨∇f(x̂k),xk − x̄k+1⟩

≤ 1

pmin
E[F (xk) + αk − F (xk+1)− αk+1 | i0, . . . , ik−1]

+
1

pmin

m∑
i=1

pi

(
Li
2

+ τLV
res

√
pmax −

1

γi

)
|∆k

i |2 + ∥xk − x̄k+1∥2Γ−1 .

(3.8.7)

Since γiLi + 2γiτL
V
res
√
pmax ≤ δ < 2, we have

Li
2

+ τLV
res

√
pmax −

1

γi
=

1

2γi
(γiLi + 2γiτL

V
res

√
pmax − 2) < 0,

3.8. PROOFS OF SECTION 3.3 57

and hence (3.8.7) yields

g(xk)− g(x̄k+1) + ⟨∇f(x̂k),xk − x̄k+1⟩

≤ 1

pmin
E[F (xk) + αk − F (xk+1)− αk+1 | i0, . . . , ik−1]

+
δ − 2

2

m∑
i=1

1

γi
|∆k

i |2 + ∥xk − x̄k+1∥2Γ−1 .

The statement follows from (3.8.6).

Proof of Proposition 3.17. We know that

∥xk − x∥2Γ−1 − ∥x̄k+1 − x∥2Γ−1 = −∥xk − x̄k+1∥2Γ−1 + 2⟨xk − x̄k+1,xk − x⟩Γ−1 .

We derive from Proposition 3.16, multiplied by 2, that

∥x̄k+1 − x∥2Γ−1 ≤ ∥xk − x∥2Γ−1

+
2

pmin
E
[
F (xk) + αk − F (xk+1)− αk+1 | i0, . . . , ik−1

]
+ 2(F (x)− F (xk)) + τLres

∑
h∈J(k)

∥xh − xh+1∥2

(δ − 1)∥xk − x̄k+1∥2Γ−1 . (3.8.8)

where αk = LV
res/(2

√
pmax)

∑k−1
h=k−τ (h − (k − τ) + 1)∥xh+1 − xh∥2V. It follows from

Lemma 3.15 that

E
[
∥xk+1 − x∥2W | i0, . . . , ik−1

]
≤ ∥xk − x∥2W
+ (δ − 1)∥xk − x̄k+1∥2Γ−1

+
2

pmin
E
[
F (xk) + αk − F (xk+1)− αk+1 | i0, . . . , ik−1

]
+ 2(F (x)− F (xk)) + τLres

∑
h∈J(k)

∥xh − xh+1∥2. (3.8.9)

Plugging (3.3.3) in (3.8.9) the statement follows.

Proof of Proposition 3.18. Let k ∈ N and x ∈ H. From Proposition 3.17, we have

E
[
∥xk+1 − x∥2W | i0, . . . , ik−1

]
≤ ∥xk − x∥2W

+
2

pmin

(
(δ − 1)+
2− δ

+ 1

)
E
[
F (xk) + αk − F (xk+1)− αk+1 | i0, . . . , ik−1

]
+ τLres

∑
h∈J(k)

∥xh − xh+1∥2

+ 2(F (x)− E
[
F (xk+1) + αk+1 | i0, . . . , ik−1

]
).

− 2(E
[
F (xk) + αk − F (xk+1)− αk+1 | i0, . . . , ik−1

]
) + 2αk

Set for all k ∈ N,

ξk = 2

(
max{1, (2− δ)−1}

pmin
− 1

)
E
[
F (xk) + αk − F (xk+1)− αk+1 | i0, . . . , ik−1

]
+ τLres

∑
h∈J(k)

∥xh − xh+1∥2 + 2αk.

58 CHAPTER 3

Now, on the one hand, recalling (3.8.14), (3.3.3) and Lemma 3.15, we have

E

[∑
k∈N

∑
h∈J(k)

∥xh − xh+1∥2
]
≤ τγmaxpmax

∑
k∈N

E[∥xk − xk+1∥2W]

≤ 2τγmaxpmax

(2− δ)pmin

∑
k∈N

(
E[F (xk) + αk]− E[F (xk+1)− αk+1]

)
≤ 2τγmaxpmax

(2− δ)pmin
(F (x0) + α0 − F∗) < +∞

Recalling the definition of αk in Proposition 3.16 and of LV
res in Remark 3.8, this also yields

E

[∑
k∈N

αk

]
≤ τLV

res

2
√
pmax

E

[∑
k∈N

k−1∑
h=k−τ

∥xh − xh+1∥2V
]

≤ τLV
respmax

2
√
pmax

E

[∑
k∈N

k−1∑
h=k−τ

∥xh − xh+1∥2
]

≤ τLresp
2
max√

pmin

τγmax

(2− δ)pmin
(F (x0) + α0 − F∗).

On the other hand, setting ηk = F (xk) + αk − E
[
F (xk+1) − αk+1 | i0, . . . , ik−1

]
, which in

virtue of (3.3.3) is positive P-a.s., we have

E

[∑
k∈N

ηk

]
=
∑
k∈N

E[ηk] = sup
n∈N

n∑
k=0

E[F (xk)+αk]−E[F (xk+1)−αk+1] ≤ F (x0)+α0−F∗ < +∞.

Let C =
max

{
1, (2− δ)−1

}
pmin

− 1 + τ2
Lresγmaxpmax

pmin(2− δ)

(
1 +

pmax√
pmin

)
. We then get

∑
k∈N

E[ξk] ≤ 2C(F (x0)− F∗).

We remark that (∀ i ∈ [m]) γi(Li + 2τLrespmax/
√
pmin) < 2. So γiτLres <

2−γiLi

2

√
pmin

pmax
.

This implies τγmaxLres <
2−γmaxLi0

2

√
pmin

pmax
, where i0 ∈ [m] such that γi0 = γmax. Thus

τγmaxLres <
2− γmaxLmin

2

√
pmin

pmax
. (3.8.10)

Using this in C, we get

C ≤
max

{
1, (2− δ)−1

}
pmin

− 1 + τ
2− γmaxLmin

2
√
pmin(2− δ)

(
1 +

pmax√
pmin

)
≤

max
{
1, (2− δ)−1

}
pmin

− 1 + τ
1

√
pmin(2− δ)

(
1 +

pmax√
pmin

)
.

The statement follows.

Proof of Proposition 3.19. It follows from (3.3.3) that

(2− δ)
pmin

2
E
[
∥x̄k+1 − xk∥2Γ−1

]
≤ E

[
F (xk) + αk

]
− E

[
F (xk+1) + αk+1

]
.

3.8. PROOFS OF SECTION 3.3 59

This means that
(
E[F (xk) + αk]

)
k∈N is a nonincreasing sequence and

(2− δ)
pmin

2
E

[∑
k∈N

∥x̄k+1 − xk∥2Γ−1

]
= (2− δ)

pmin

2
sup
k∈N

k∑
h=0

E
[
∥x̄h+1 − xh∥2Γ−1

]
≤ sup

k∈N
E
[
F (x0) + α0

]
− E

[
F (xk+1) + αk+1

]
≤ F (x0) + α0 − F∗ < +∞.

Therefore, since ∥·∥2 ≤ (maxi γi)∥·∥2Γ−1 , we derive that∑
k∈N

∥x̄k+1 − xk∥2 <∞ P-a.s. (3.8.11)

So, it follows that

∥x̄k+1 − xk∥ → 0 P-a.s, (3.8.12)

and, since ∥xk+1 − xk∥ ≤ ∥x̄k+1 − xk∥ for all k ∈ N, we have also∑
k∈N

∥xk+1 − xk∥2 <∞ and ∥xk+1 − xk∥ → 0 P-a.s. (3.8.13)

Now, by Lemma 3.6, we have ∥x̂k − xk∥2 ≤ τ
∑

h∈J(k)∥xh − xh+1∥2 and, moreover,∑
k∈N

∑
h∈J(k)

∥xh − xh+1∥2 ≤
∑
k∈N

τ∥xk − xk+1∥2 <∞ P-a.s., (3.8.14)

so that

∥x̄k+1 − x̂k∥ ≤ ∥x̄k+1 − xk∥+ ∥xk − x̂k∥ → 0 P-a.s. (3.8.15)

Define, for all i ∈ [m],

vki = ∇if(x̄
k+1)−∇if(x̂

k) +
∆ki
γi
. (3.8.16)

Then, thanks to the second equation in (3.2.4), we have

vk = (vk1 , · · · , vkm) ∈ ∇f(x̄k+1) + ∂g(x̄k+1) = ∂ (f + g) (x̄k+1). (3.8.17)

Moreover, since ∇f is Lipschitz continuous, definition (3.8.16) and equations (3.8.12),
(3.8.15) yield vk → 0 P-a.s.

CHAPTER 4

Variance reduction techniques for stochastic
proximal point algorithms

In the context of finite sums minimization, variance reduction techniques are widely used to im-
prove the performance of state-of-the-art stochastic gradient methods. Their practical impact is
clear, as well as their theoretical properties. Stochastic proximal point algorithms have been stud-
ied as an alternative to stochastic gradient algorithms since they are more stable with respect to the
choice of the stepsize but their variance reduced versions are not as studied as the gradient ones. In
this work, we propose the first unified study of variance reduction techniques for stochastic prox-
imal point algorithms. We introduce a generic stochastic proximal algorithm that can be specified
to give the proximal version of SVRG, SAGA, and some of their variants for smooth and convex
functions. We provide several convergence results for the iterates and the objective function val-
ues. In addition, under the Polyak-Łojasiewicz (PL) condition, we obtain linear convergence rates
for the iterates and the function values. Our numerical experiments demonstrate the advantages
of the proximal variance reduction methods over their gradient counterparts, especially about the
stability with respect to the choice of the stepsize and the complexity of the problem.

4.1 Introduction

The objective of this chapter is to solve the finite-sum optimization problem 2.2.1, that is

minimize
x∈H

F (x) =
1

n

n∑
i=1

fi(x), (4.1.1)

where H is a separable Hilbert space and for all i ∈ {1, 2, · · · , n}, fi : H → R.

Stochastic Proximal Point Algorithm. Whenever the computation of the proximity oper-
ator of fi, proxfi (for a definition see notations Section 1.3.1), is tractable, an alternative
to SGD is the stochastic proximal point algorithm (SPPA). Instead of the gradient ∇fik ,
the proximity operator of an fik , chosen randomly, is used at each iteration k:

xk+1 = proxγkfik (x
k). (SPPA)

As explained in Section 2.2.3, the convergence rates of SPPA are worse than those of de-
terministic PPA. The culprit, as with gradient algorithms, is the variance introduced by
the stochasticity. The goal of this chapter is to study a variance reduction methods for
SPPA, as for gradient case. Even though we work with the proximity operator, our analy-
sis required L−smoothness. To the best of our knowledge, all variance reduced stochastic
proximal point studies that exist in the literature also require at least smoothness (differ-
entiability) in order to exhibit an improved rate. We present those related results in the
next paragraph.

61

62 CHAPTER 4

Variance reduced Stochastic Proximal Point Algorithm. Some variance reduced versions
of SPPA have been proposed in the literature. In this section, we briefly describe them.

The first one is point-SAGA [30], closely related to SAGA. The update of the stored
gradients is

∀ i ∈ [n] : ϕk+1
i = ϕki + δi,ik(x

k+1 − ϕki),

whereas in SAGA and its proximal version that we proposed in Algorithm 4.5, the update
is

∀ i ∈ [n] : ϕk+1
i = ϕki + δi,ik(x

k − ϕki).

In the smooth case, [30] provides linear convergence when fi is L−smooth and µ−strongly
convex for every i ∈ [n]. Strongly convexity of each fi implies F strong convexity. [30]
also has an ergodic sublinear convergence for nonsmooth and strongly convex function.
While the rate is ergodic and sublinear for strongly convex functions, the stepsize provided
is constant.

Still in the smooth setting, another work is [56], where the authors proved linear con-
vergence for again strongly convex functions fi and for the algorithm we called loopless
SVRP (L-SVRP); see Algorithm 4.4. This algorithm is the proximal version of L-SVRG [61].
A difference is that [56] uses an approximation of the proximity operator at each iteration.
It also uses a condition that is less strong than the L−smooth condition, i.e. “second-order
similarity”:

1

n

n∑
i=1

∥∇fi(x)−∇f(x)− [∇fi(y)−∇f(y)]∥2 ≤ δ2∥x− y∥2.

Indeed, L−smoothness implies “second-order similarity”.
In [74], a variant of SVRP 4.3, called SNSPP, is presented. The particularity of SNSPP

is that it contains a sub-routine to compute the proximity operator. This can be useful in
practice when we do not have a closed form solution of the proximity operator. Contingent
on some additional condition on the conjugate of fi and assuming semismoothness of the
proximity mapping, they provide linear convergence rate for SNSPP in the L-smooth case
and with F strongly convex. They also give an ergodic sublinear convergence rate for
weakly convex functions.

Algorithm Smooth Smooth Smooth Non-Smooth
+ convex + SC + PL + SC

Point-Saga [30] Point-Saga NA O(εk) NA O(1/k)

Khaled et al. [56] L-SVRP NA O(εk) NA NA
Milzarek et al. [74] SNSPP NA O(εk) NA NA

This chapter Unified O(1/k) O(εk) O(εk) NA
(not for SVRP)

Table 4.1: This is a summary of the existing work in variance reduction for SPPA in the
convex setting. In the table, SC stands for strongly convex and 0 < ε < 1. We recall that
Milzarek et al. have an ergodic sublinear rate for weakly convex functions.

Contributions. Our contribution can be summarized as follows:

• Assuming that the functions fi are smooth, we propose the first unified variance re-
duction techniques for stochastic proximal point method (SPPA). Indeed, we devise

4.2. ALGORITHM AND ASSUMPTIONS 63

a unified analysis that extends several variance reduction techniques used for SGD
to SPPA as listed in Section 4.4. In particular, we prove sub-linear convergence rate
O(1/k) of the function values for convex functions. This convex case is new in the
literature. Assuming additionally that the objective function F satisfies the Polyak-
Łojasiewicz (PL) condition, we prove linear convergence rate both for the iterates
and the function values. The PL condition on F is less strong than the strong con-
vexity of F or even fi that is used in the related previous work. Finally, we show
that these results are achieved for constant stepsizes. The idea of unified study was
inspired by what was done in [45] for the SGD case.

• As a byproduct, we derive and analyze some stochastic variance reduced proximal
point algorithms, in analogy to SVRG [54], SAGA [31] and L-SVRG [61].

• The experiments show that, in most cases and especially for difficult problems, the
proposed methods are more robust to the stepsizes and converge with bigger step-
sizes, while retaining at least the same speed of convergence as their gradient coun-
terparts. That generalizes the advantages of SPPA over SGD (see [5, 58]) to variance
reduction settings.

Organization. The rest of the chapter is organized as follows: In section 4.2, we present
our generic algorithm and the assumptions we will need in subsequent sections. In Section
4.3, we show the results pertaining to that algorithm. Then, in Section 4.4, we specialize
the general results to particular variance reduction algorithms. Section 4.5 collects our
numerical experiments. Proofs of auxiliary results can be found in Appendix 3.7.

4.2 Algorithm and assumptions

4.2.1 Algorithm

In this paragraph we describe a generic method for solving problem (2.2.1), based on
the stochastic proximal point algorithm.

Algorithm 4.1: Let (ek)k∈N be a sequence of random vectors in H and let (ik)k∈N be
a sequence of i.i.d. random variables uniformly distributed on {1, . . . , n}, so that ik
is independent of e0, . . . , ek−1. Let γ > 0 and set the initial point x0 ≡ x0 ∈ H. Then
define

for k = 0, 1, . . .⌊
xk+1 = proxγfik

(
xk + γek

)
.

Algorithm 4.1 is a stochastic proximal point method including a general variance re-
duction term ek. Note that xk+1 is defined as a random vector depending on xk, ik, and
ek. As we shall see in Section 4.4, depending on the specific algorithm (SPPA, SVRP, L-
SVRP, SAPA), ek may be defined in various ways. Note that by definition of the proximal
operator, assuming fik is differentiable and setting wk = ∇fik(xk+1) − ek, the update in
Algorithm 4.1 can be also rewritten as:

xk+1 = xk − γ
[
∇fik(x

k+1)− ek
]
= xk − γwk. (4.2.1)

Equation (4.2.1) shows that Algorithm 4.1 can be seen as an implicit stochastic gradient
method, in contrast to the one proposed in [45], where wk is replaced by the explicit

64 CHAPTER 4

stochastic gradient direction

vk := ∇fik(x
k)− ek. (4.2.2)

We disclose here that, even thought vk does not appear explicitly in Algorithm 4.1, it is still
relevant in the associated analysis of the convergence bounds, and, for those derivations,
some assumptions will be required on vk.

4.2.2 Assumptions

The first assumptions are made on the functions fi : H → R, i ∈ [n], as well as on the
objective function F : H → R.

Assumptions 4.1:

(A.i) argminF ̸= ∅.

(A.ii) For all i ∈ [n], fi is convex and L-smooth, i.e., differentiable and such that

(∀x, y ∈ H) ∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥

for some L > 0. As a consequence, F is convex and L-smooth.

(A.iii) F satisfies the PL condition with constant µ > 0, i.e.,

(∀x ∈ H) F (x)− F∗ ≤
1

2µ
∥∇F (x)∥2, (4.2.3)

which is equivalent to the following quadratic growth condition when F is
convex

(∀x ∈ H)
µ

2
dist(x, argminF)2 ≤ F (x)− F∗. (4.2.4)

(A.i) and (A.ii) constitute the common assumptions that we use for all the conver-
gence results presented in Sections 4.3 and 4.4. Assumption (A.iii) is often called Polyak-
Łojasiewicz condition and was introduced in [69] (see also [84]) and is closely connected
with the quadratic growth condition (4.2.4) (they are equivalent in the convex setting, see
e.g. [16]). Conditions (4.2.3) and (4.2.4) are both relaxations of the strong convexity
property and are powerful key tools in establishing linear convergence for many iterative
schemes, both in the convex [16, 33, 42, 55] and the non-convex setting [4, 10, 15, 84,
85].

In the same fashion, in this work, Assumption (A.iii) will be used in order to deduce
linear convergence rates in terms of objective function values for the sequence generated
by Algorithm 4.1.

Assumptions 4.2: Let, for all k ∈ N, vk := ∇fik(xk) − ek. Then there exist non-
negative real numbers A,B,C ∈ R+ and ρ ∈ [0, 1], and a non-positive real-valued
random variable D such that, for every k ∈ N,

(B.i) E[ek |Fk] = 0 a.s.,

(B.ii) E
[
∥vk∥2 |Fk

]
≤ 2A(F (xk)− F∗) +Bσ2k +D a.s.,

(B.iii) E
[
σ2k+1

]
≤ (1− ρ)E

[
σ2k
]
+ 2CE[F (xk)− F∗],

where σk is a real-valued random variable, (Fk)k∈N is a sequence of σ-algebras such

4.3. MAIN RESULTS 65

that, ∀k ∈ N, Fk ⊂ Fk+1 ⊂ A, ik−1 and xk are Fk-measurables, and ik is independent
of Fk.

Assumption (B.i) ensures that E[vk |Fk] = E[∇fik(xk) |Fk] = ∇F (xk), so that the
direction vk is an unbiased estimator of the full gradient of F at xk, which is a standard
assumption in the related literature. Assumption (B.ii) on E

[
∥vk∥2 |Fk

]
is the equivalent

of what is called, in the literature [45, 57], the ABC condition on E
[
∥∇fik(xk)∥2 |Fk

]
with σk = ∥∇F (xk)∥ and D constant (see also [45]). Assumption (B.iii) is justified by
the fact that it is needed for the theoretical study and it is satisfied by many examples of
variance reduction techniques. For additional discussion on these assumptions, especially
Assumption (B.iii), see [45].

4.3 Main results

In the rest of the chapter we will always suppose that Assumption (A.i) holds.
Before stating the main results of this work, we start with a technical proposition that

constitutes the cornerstone of our analysis. The proof can be found in Appendix 4.6.1

Proposition 4.3

Suppose that Assumptions 4.2 and (A.ii) are verified and that the sequence (xk)k∈N is
generated by Algorithm 4.1. Let M > 0. Then, for all k ∈ N,

E[dist(xk+1, argminF)2] + γ2ME[σ2k+1]

≤ E[dist(xk, argminF)2] + γ2 [M +B − ρM]E[σ2k]

− 2γ [1− γ(A+MC)]E[F (xk)− F∗]

+ γ2E[D].

We now state two theorems that can be derived from the previous proposition. The
first theorem deals with cases where the function F is only convex.

Theorem 4.4

Suppose that Assumptions (A.ii) and 4.2 hold with ρ > 0 and that the sequence
(xk)k∈N is generated by Algorithm 4.1. Let M > 0 and γ > 0 be such that M ≥ B/ρ
and γ < 1/(A+MC). Then, for all k ∈ N,

E[F (x̄k)− F∗] ≤
dist(x0, argminF)2 + γ2ME[σ20]

2γk [1− γ(A+MC)]
,

with x̄k = 1
k

∑k−1
t=0 xt.

Proof. Since B − ρM ≤ 0 and E[D] ≤ 0, it follows from Proposition 4.3 that

2γ [1− γ(A+MC)]E[F (xk)− F∗]

≤ E[dist(xk, argminF)2] + γ2ME[σ2k]

−
(
E[dist(xk+1, argminF)2] + γ2ME[σk+1]

)
.

66 CHAPTER 4

Summing from 0 up to k − 1 and dividing both sides by k, we obtain

2γ [1− γ(A+MC)]
k−1∑
t=0

1

k
E[F (xt)− F∗]

≤ 1

k

(
dist(x0, argminF)2 + γ2ME[σ20]

)
− 1

k

(
E[dist(xk, argminF)]2 + γ2ME[σ2k]

)
≤ 1

k

(
dist(x0, argminF)2 + γ2ME[σ20]

)
.

Finally, by convexity of F , we get

E[F (x̄k)− F∗] ≤
dist(x0, argminF)2 + γ2ME[σ20]

2γk [1− γ(A+MC)]
.

The next theorem shows that, when F additionally satisfies the PL property (4.2.3),
the sequence generated by algorithm 4.1 exhibits a geometric convergence rate both in
terms of the distance to a minimizer and also of the values of the objective function.

Theorem 4.5

Suppose that Assumptions 4.1 and 4.2 are verified with ρ > 0 and that the sequence
(xk)k∈N is generated by Algorithm 4.1. Let M be such that M > B/ρ and γ > 0 such
that γ < 1/(A +MC). Set q := max

{
1− γµ (1− γ(A+MC)) , 1 + B

M − ρ
}

. Then
q ∈]0, 1[and for all k ∈ N,

V k+1 ≤ qV k,

with V k = E[dist(xk, argminF)2]+γ2ME[σ2k] for all k ∈ N. Moreover, for every k ∈ N,

E[dist(xk, argminF)2] ≤ qk
(
dist(x0, argminF)2 + γ2ME[σ20]

)
,

E[F (xk)− F∗] ≤
qkL

2

(
dist(x0, argminF)2 + γ2ME[σ20]

)
.

Proof. Since γ < 1
A+MC , we obtain thanks to Assumption (A.iii) and Proposition 4.3

E[dist(xk+1, argminF)2]+γ2ME[σ2k+1]

≤ [1− γµ (1− γ(A+MC))]E[dist(xk, argminF)2]

+ γ2M

[
1 +

B

M
− ρ

]
E[σ2k]. (4.3.1)

From γ < 1
A+MC and M > B

ρ , we obtain from (4.3.1) that

E[dist(xk+1, argminF)2]+γ2ME[σ2k+1]

≤ q
(
E[dist(xk, argminF)2] + γ2ME[σ2k]

)
,

with q := max

{
1− γµ (1− γ(A+MC)) , 1 +

B

M
− ρ

}
.

Given 0 < 1− ρ ≤ 1 +B/M − ρ < 1, it is clear that q ∈]0, 1[. Iterating down on k, we
obtain

E[dist(xk, argminF)2] ≤ qk
(
dist(x0, argminF)2 + γ2ME[σ20]

)
. (4.3.2)

4.4. DERIVATION OF STOCHASTIC PROXIMAL POINT TYPE ALGORITHMS 67

Let x∗ ∈ argminF . As F is L-Lipschitz smooth, from the Descent Lemma [78, Lemma
1.2.3], we have

(∀x ∈ H) F (x)− F∗ ≤
L

2
∥x− x∗∥2.

In particular,

(∀x ∈ H) F (x)− F∗ ≤
L

2
dist(x, argminF)2. (4.3.3)

Using (4.3.3) with xk in (4.3.2), we get

E[F (xk)− F∗] ≤
qkL

2

(
dist(x0, argminF)2 + γ2ME[σ20]

)
.

Remark 4.6:

(i) The convergence rate of order O
(
1
k

)
for the general variance reduction scheme

4.1, with constant stepsize, as stated in Theorem 4.4, is an improved extension
of the one found for the vanilla stochastic proximal gradient method (see e.g.
[5, Proposition 3.8]). It is important to mention that the convergence with a
constant step-size is no longer true when D in Assumption (B.ii) is positive. As
we shall see in Section 4.4 several choices for the variance term ek in Algorithm
4.1 can be beneficial regarding this issue, provided Assumption (B.ii) with D ≤
0.

(ii) The geometric rates as stated in Theorem 4.5 have some similarity with the
ones found in [45, Theorem 4.1], where the authors present a unified study
for variance reduced stochastic (explicit) gradient methods. However we note
that the Polyak-Łojasiewicz condition (4.2.3) on F used here is slightly weaker
than the quasi-strong convexity used in [45, Assumption 4.2].

4.4 Derivation of stochastic proximal point type algorithms

In this section, we provide and analyze several instances of the general scheme 4.1, cor-
responding to different choices of the variance reduction term ek. In particular in the
next paragraphs we describe four different schemes, namely stochastic proximal point al-
gorithm (SPPA), Stochastic Variance Reduced Proximal (SVRP) algorithm, Loopless SVRP
(L-SVRP) and Stochastic Aggregate Proximal Algorithm (SAPA).

4.4.1 Stochastic Proximal Point Algorithm

We start by presenting the classic vanilla stochastic proximal method (SPPA), see e.g. [12,
14, 82]. We suppose that Assumptions (A.i) and (A.ii) hold and that for all k ∈ N

σ2k := sup
x∗∈argminF

1

n

n∑
i=1

∥∇fi(x∗)∥2 < +∞. (4.4.1)

We recall the stochastic proximal point algorithm

68 CHAPTER 4

Algorithm 4.2 (SPPA):
Let (ik)k∈N be a sequence of i.i.d. random variables uniformly distributed on
{1, . . . , n}. Let γk > 0 for all k ∈ N and set the initial point x0 ≡ x0 ∈ H. Define

for k = 0, 1, . . .⌊
xk+1 = proxγkfik (x

k).
(4.4.2)

Algorithm 4.2 can be directly identified with the general scheme (4.1), by setting ek =
0 and vk = ∇fik(xk). The following lemma provides a bound in expectation on the
sequence ∥vk∥ and can be found in the related literature; see e.g. [94, Lemma 1].

Lemma 4.7. We suppose that Assumption (A.ii) holds and that (xk)k∈N is a sequence gener-
ated by Algorithm 4.2 and vk = ∇fik(xk). Then, for all k ∈ N, it holds

E[∥vk∥2 |Fk] ≤ 4L
(
F (xk)− F∗

)
+ 2σ2k,

E
[
σ2k+1

]
= σ2k+1 = σ2k = E

[
σ2k
]
,

where Fk = σ(i0, . . . , ik−1) and σ2k is defined as a constant random variable in (4.4.1).

From Lemma 4.7, we immediately notice that Assumptions 4.2 are verified with A =
2L,B = 2, C = ρ = 0 and D ≡ 0. In this setting, we are able to recover the following
convergence result (see also [5, Lemma 3.10 and Proposition 3.8]).

Theorem 4.8

Suppose that Assumption (A.ii) holds and let (γk)k∈N be a positive real valued se-
quence such that γk ≤ 1

4L , for all k ∈ N. Suppose also that the sequence (xk)k∈N is
generated by Algorithm 4.2 with the sequence (γk)k∈N. Then, ∀k ≥ 1,

E[F (x̄k)− F∗] ≤
dist(x0, argminF)2∑k−1

t=0 γt
+ 2σ21

∑k−1
t=0 γ

2
t∑k−1

t=0 γt
,

where x̄k =
k−1∑
t=0

γt∑k−1
t=0 γt

xt.

Proof. From Proposition 4.3 adapted to the update (4.4.2), it follows that

2γk [1− 2γkL]E[F (x
k)− F∗] ≤ E[dist(xk, argminF)]2

− E[dist(xk+1, argminF)]2 + 2γ2kσ
2
k. (4.4.3)

Since γk ≤ 1/4L, for all k ∈ N, we have from (4.4.3),

γkE[F (x
k)− F∗] ≤ E[dist(xk, argminF)]2 − E[dist(xk+1, argminF)]2 + 2γ2kσ

2
k

= E[dist(xk, argminF)]2 − E[dist(xk+1, argminF)]2 + 2γ2kσ
2
1.

4.4. DERIVATION OF STOCHASTIC PROXIMAL POINT TYPE ALGORITHMS 69

Let k ≥ 1. Summing from 0 up to k − 1 and dividing both side by
∑k−1

t=0 γt, we obtain

k−1∑
t=0

γt∑k−1
t=0 γt

E[F (xt)− F∗]

≤ 1∑k−1
t=0 γt

(
dist(x0, argminF)2 − E[dist(xk, argminF)]2

)
+ 2σ21

∑k−1
t=0 γ

2
t∑k−1

t=0 γt

≤ dist(x0, argminF)2∑k−1
t=0 γt

+ 2σ21

∑k−1
t=0 γ

2
t∑k−1

t=0 γt
.

Finally by convexity of F and using Jensen’s inequality, we obtain

E[F (x̄k)− F∗] ≤
dist(x0, argminF)2∑k−1

t=0 γt
+ 2σ21

∑k−1
t=0 γ

2
t∑k−1

t=0 γt
.

4.4.2 Stochastic Variance Reduced Proximal point algorithm

In this paragraph we present a new Stochastic Proximal Point algorithm coupled with
a variance reduction term, in the spirit of the Stochastic Variance Reduction Gradient
(SVRG) method introduced in [54]. It is coined Stochastic Variance Reduced Proximal
point algorithm (SVRP).

The SVRP method involves two levels of iterative procedure: outer iterations and inner
iterations. We shall stress out that the framework presented in the previous section covers
only the inner iteration procedure and thus the convergence analysis for SVRP demands an
additional care. In contrast to the subsequent schemes, Theorems 4.4 and 4.5 do not apply
directly to SVRP. In particular, as it can be noted below, in the case of SVRP, the constant ρ
appearing in (B.iii) in Assumptions 4.2, is null. Nevertheless, it is worth mentioning that
the convergence analysis still uses Proposition 4.3.

Algorithm 4.3 (SVRP):
Let m ∈ N, with m ≥ 1, and (ξs)s∈N, (it)t∈N be two independent sequences of
i.i.d. random variables uniformly distributed on {0, 1, . . . ,m − 1} and {1, . . . , n} re-
spectively. Let γ > 0 and set the initial point x̃0 ≡ x̃0 ∈ H. Then

for s = 0, 1, . . .

x0 = x̃s

for k = 0, . . . ,m− 1⌊
xk+1 = proxγfism+k

(
xk + γ∇fism+k

(x̃s)− γ∇F (x̃s)
)

x̃s+1 =
∑m−1

k=0 δk,ξsx
k,

or
x̃s+1 =

∑m−1
k=0

1
mxk,

where δk,h is the Kronecker symbol. In the case of the first option, one iterate is
random selected among the inner iterates x0,x1, · · · ,xm−1, losing possibly a lot of
information computed in the inner loop. For the second option, those inner iterates
are averaged and most of the information are used.

Let s ∈ N. In this case, for all k ∈ {0, 1, · · · ,m − 1}, setting jk = ism+k, the inner
iteration procedure of Algorithm 4.3 can be identified with the general scheme 4.1, by

70 CHAPTER 4

setting ek := ∇fjk(x̃s)−∇F (x̃s). In addition let us define

σ2k :=
1

n

n∑
i=1

∥∇fi(x̃s)−∇fi(ỹs)∥2 (4.4.4)

where ỹs ∈ argminF is such that ∥x̃s − ỹs∥ = dist(x̃s, argminF). Moreover, setting
Fs,k = σ(ξ0, . . . , ξs−1,i0, . . . , ism+k−1), we have that x̃s, ỹs, and xk are Fs,k-measurables
and jk is independent of Fs,k. The following result is proved in Appendix 4.6.2.

Lemma 4.9. Suppose that Assumption (A.ii) holds true. Let s ∈ N and let (xk)k∈[m] be the
(finite) sequence generated by the inner iteration in Algorithm 4.3. Set vk = ∇fjk

(
xk
)
−

∇fjk(x̃s) +∇F (x̃s) and σk as defined in (4.4.4). Then, for every k ∈ {0, 1, · · · ,m − 1}, it
holds

E[∥vk∥2 |Fs,k] ≤ 4L
(
F (xk)− F∗

)
+ 2σ2k − 2∥∇F (x̃s)∥2, (4.4.5)

and

E
[
σ2k+1 |Fs,0

]
= E

[
σ2k |Fs,0

]
.

As an immediate consequence, of Proposition 4.3, we have the following corollary
regarding the inner iteration procedure of Algorithm 4.3.

Corollary 4.10. Suppose that Assumption (A.ii) holds. Let s ∈ N and let (xk)k∈[m] be the
sequence generated by the inner iteration in Algorithm 4.3. Then, for all k ∈ {0, 1, · · · ,m−
1},

E[dist(xk+1, argminF)2] ≤ E[dist(xk, argminF)2]

− 2γ (1− 2γL)E[F (xk)− F∗]

+ 4Lγ2E [F (x̃s)− F∗]− 2γ2E[∥∇F (x̃s)∥2].
(4.4.6)

Proof. Since Assumption (A.ii) is true, by Lemma 4.9 Assumptions 4.2 are satisfied with
vk = ∇fjk

(
xk
)
−∇fjk(x̃s)+∇F (x̃s), A = 2L,B = 2, ρ = C = 0, and D = −2∥∇F (x̃s)∥2.

So Proposition 4.3 yields

E[dist(xk+1, argminF)2 |Fs,0] ≤ E[dist(xk, argminF)2 |Fs,0]
− 2γ (1− 2γL)E[F (xk)− F∗ |Fs,0]
+ 4Lγ2E [F (x̃s)− F∗ |Fs,0]
− 2γ2E[∥∇F (x̃s)∥2 |Fs,0].

Thus, taking the total expectation, the statement follows.

The next Theorem shows that under some additional assumptions on the choice of the
step-size γ and the number of inner iterations m ∈ N, Algorithm 4.3 yields a geometric
convergence rate in terms of expectation of the objective function values of the outer
iterates (x̃s)s∈N.

Theorem 4.11

Suppose that Assumptions 4.1 are satisfied and that the sequence (x̃s)s∈N is generated
by Algorithm 4.3 with

0 < γ <
1

2(2L− µ)
and m >

1

µγ(1− 2γ(2L− µ))
. (4.4.7)

4.4. DERIVATION OF STOCHASTIC PROXIMAL POINT TYPE ALGORITHMS 71

Then, for all s ∈ N, it holds

E
[
F
(
x̃s+1

)
− F∗

]
≤ qs

(
F (x0)− F∗

)
, (4.4.8)

with q :=
(

1

µγ(1− 2Lγ)m
+

2γ(L− µ)

1− 2Lγ

)
< 1.

Remark 4.12:

(i) Conditions (4.4.7) is used in this form if γ is set first and m is chosen after.
They are needed to ensure that q < 1. Indeed, it is clear that 0 < γ < 1

2(2L−µ)

is needed to have 2γ(L−µ)
1−2Lγ < 1. If not, q can not be less than 1. Then we need

m > 1
µγ(1−2γ(2L−µ)) once γ is fixed.

(ii) Conditions (4.4.7) can be equivalently stated as follows

m ≥ 8(2L− µ)

µ
and

1−
√

1− 8(2κ− 1)/m

4(2L− µ)
< γ ≤

1 +
√

1− 8(2κ− 1)/m

4(2L− µ)
,

κ =
L

µ
. The above formulas can be useful if one prefers to set the parameter m

first and set the stepsize γ afterwards.

(iii) The convergence rate in Theorem 4.11 establishes the improvement from the
outer step s to s + 1. Of course, it depends on the number of inner iterations
m. As expected, and as we can see from Equation 4.4.8, increasing m improve
the bound on the rate, and since m is not bounded from above, the best choice
would be to let m go to +∞. In practice, there is not a best choice of m, but
empirically a balance between the number of inner and outer iterations should
be found. Consequently there is no optimal choice for γ either.

(iv) It is worth mentioning that the linear convergence factor q in (4.4.8) is better
(smaller) than the one provided in [54, Theorem 1] for the SVRG method for
strongly convex functions. There, it is 1

µγ(1−2Lγ)m + 2γL
1−2Lγ . The linear rate of

convergence in (4.4.8) is also better than the one in [114, Proposition 3.1], and
also [44, Theorem 1], dealing with a proximal version of SVRG for functions
satisfying the PL condition (4.2.3). In both papers, the factor is 1

2µγ(1−4Lγ)m +
4γL(m+1)
(1−4Lγ)m . However, we note that this improvement can be also obtained for
the aforementioned SVRG methods using a similar analysis.

(v) We shall stress out that by following the lines of the proof of Theorem 4.11, the
same linear convergence rate found in (4.4.8), holds true also for the averaged
iterate x̃s+1 = 1

m

∑m−1
k=0 xk. But the analysis does not work for the last iterate

of the inner loop.

Proof of Theorem 4.11. We consider a fixed stage s ∈ N and x̃s+1 is defined as in Algorithm
4.3. By summing inequality (4.4.6) in Corollary 4.10 over k = 0, . . . ,m− 1 and taking the

72 CHAPTER 4

total expectation, we obtain

E[dist(xm, argminF)]2 + 2γ(1− 2Lγ)mE[F
(
x̃s+1

)
− F∗]

≤ dist(x0, argminF)2 + 4Lmγ2E [F (x̃s)− F∗]

− 2γ2mE[∥∇F (x̃s)∥2]
= E[dist(x̃s, argminF)]2 + 4Lmγ2E [F (x̃s)− F∗]

− 2γ2mE[∥∇F (x̃s)∥2]

≤ 2

µ
E [F (x̃s)− F∗] + 4Lmγ2E [F (x̃s)− F∗]

− 2γ2mE[∥∇F (x̃s)∥2]
= 2

(
µ−1 + 2Lmγ2

)
E [F (x̃s)− F∗]− 2γ2mE[∥∇F (x̃s)∥2]

≤ 2
(
µ−1 + 2Lmγ2 − 2µmγ2

)
E [F (x̃s)− F∗] .

(4.4.9)

In the first inequality, we used the fact that

m−1∑
k=0

F (xk) = m

m−1∑
k=0

1

m
F (xk) = m

m−1∑
ξ=0

1

m
F
(∑m−1

k=0 δk,ξx
k
)
= mE[F (x̃s+1) |Fs,m−1].

Notice that relation (4.4.9) is still valid by choosing x̃s+1 =
∑m−1

k=0
1
mxk , in Algorithm 4.3,

and using Jensen inequality to lower bound
∑m−1

k=0 F (x
k) by mF (x̃s+1).

The second and the last inequalities use respectively the quadratic growth (4.2.4) and
the PL condition (4.2.3). We thus obtain

E
[
F
(
x̃s+1

)
− F∗

]
≤
(

1

µγ(1− 2Lγ)m
+

2γ(L− µ)

1− 2Lγ

)
E [F (x̃s)− F∗] .

4.4.3 Loopless SVRP
In this paragraph we propose a single-loop variant of the SVRP algorithm presented pre-
viously, by removing the burden of choosing the number of inner iterations. This idea is
inspired by the loopless Stochastic Variance Reduced Gradient (L-SVRG) method, as pro-
posed in [52, 61] (see also [45]) and here we present the stochastic proximal method
variant that we call L-SVRP.

Algorithm 4.4 (L-SVRP):
Let (ik)k∈N be a sequence of i.i.d. random variables uniformly distributed on
{1, . . . , n} and let (εk)k∈N be a sequence of i.i.d Bernoulli random variables such that
P(εk = 1) = p ∈]0, 1]. Let γ > 0 and set the initial points x0 = u0 ≡ x0 ∈ H. Then

for k = 0, 1, . . .⌊
xk+1 = proxγfik

(
xk + γ∇fik(uk)− γ∇F (uk)

)
uk+1 = (1− εk)uk + εkxk.

Here we note that Algorithm 4.4 can be identified with the general scheme 4.1, by
setting ek := ∇fik(uk)−∇F (uk). In addition we define

σ2k :=
1

n

n∑
i=1

∥∥∇fi(uk)−∇fi(yk)
∥∥2 (4.4.10)

with yk ∈ argminF such that ∥uk − yk∥ = dist(uk, argminF). Moreover, setting Fk =
σ(i0, . . . , ik−1, ε

0, . . . , εk−1), we have that xk, uk and yk are Fk-measurable, ik and εk are
independent of Fk.

4.4. DERIVATION OF STOCHASTIC PROXIMAL POINT TYPE ALGORITHMS 73

Lemma 4.13. Suppose that Assumption (A.ii) is satisfied. Let (xk)k∈N be the sequence
generated by Algorithm 4.4, with vk = ∇fik(xk) − ∇fik(uk) +∇F (uk) and σk as defined
in (4.4.10). Then for all k ∈ N, it holds

E[∥vk∥2 |Fk] ≤ 4L
(
F (xk)− F∗

)
+ 2σ2k, (4.4.11)

and

E
[
σ2k+1

]
≤ (1− p)E

[
σ2k
]
+ 2pLE

[
F (xk)− F∗

]
. (4.4.12)

Lemma 4.13 whose proof can be found in Appendix 4.6.2 ensures that Assumptions
4.2 hold true with constants A = 2L,B = 2, C = pL, ρ = p and D ≡ 0. Then the following
corollaries can be obtained by applying respectively Theorem 4.4 and 4.5 on Algorithm
4.4.

Corollary 4.14: Suppose that Assumption (A.ii) holds. Suppose also that the se-
quence (xk)k∈N is generated by Algorithm 4.4. Let M such that M ≥ 2

p and γ > 0

such that γ < 1
L(2+pM) . Then, for all k ∈ N,

E[F (x̄k)− F∗] ≤
dist(x0, argminF)2 + γ2ME[σ20]

2γk [1− γL(2 + pM)]
,

with x̄k = 1
k

∑k−1
t=0 xt.

Corollary 4.15: Suppose that Assumptions 4.1 are verified. Suppose now that the
sequence (xk)k∈N is generated by Algorithm 4.4. Let M such that M > 2/p and
γ > 0 such that γ < 1

L(2+pM) . Set q := max
{
1− γµ (1− γL(2 + pM)) , 1 + 2

M − p
}

.
Then q ∈]0, 1[and for all k ∈ N,

E[dist(xk, argminF)]2 ≤ qk
(
dist(x0, argminF)2 + γ2ME[σ20]

)
,

E[F (xk)− F∗] ≤
qkL

2

(
dist(x0, argminF)2 + γ2ME[σ20]

)
.

4.4.4 Stochastic Average Proximal Algorithm

In this paragraph, we propose a new stochastic proximal point method in analogy to SAGA
[31], called Stochastic Aggregated Proximal Algorithm (SAPA).

Algorithm 4.5 (SAPA):
Let (ik)k∈N be a sequence of i.i.d. random variables uniformly distributed on
{1, . . . , n}. Let γ > 0. Set the initial point x0 ≡ x0 ∈ H and, for every i ∈ [n],
ϕ0
i = x0. Then

for k = 0, 1, . . .⌊
xk+1 = proxγfik

(
xk + γ∇fik(ϕkik)−

γ
n

∑n
i=1∇fi(ϕki)

)
,

∀ i ∈ [n] : ϕk+1
i = ϕki + δi,ik(x

k − ϕki),

where δi,j is the Kronecker symbol.

As for the previous cases, SAPA can be identified with Algorithm 4.1, by setting ek :=

74 CHAPTER 4

∇fik(ϕkik)−
1
n

∑n
i=1∇fi(ϕki) for all k ∈ N. In addition, let

σ2k :=
1

n

n∑
i=1

∥∥∇fi(ϕki)−∇fi(x∗)
∥∥2 (4.4.13)

with x∗ ∈ argminF such that ∥x0−x∗∥ = dist(x0, argminF). Setting Fk = σ(i0, . . . , ik−1),
we have that xk and ϕki are Fk-measurables and ik is independent of Fk.

Lemma 4.16. Suppose that Assumption (A.ii) holds. Let (xk)k∈N be the sequence generated
by Algorithm 4.5, with vk = ∇fik

(
xk
)
−∇fik(ϕkik)+

1
n

∑n
i=1∇fi(ϕki) and σk as defined in

(4.4.13). Then, for all k ∈ N, it holds

E
[
∥vk∥2 |Fk

]
≤ 4L(F (xk)− F∗) + 2σ2k,

and

E
[
σ2k+1

]
≤
(
1− 1

n

)
E
[
σ2k
]
+

2L

n
E
[
F (xk)− F∗

]
. (4.4.14)

From the above lemma we know that Assumptions 4.2 are verified with A = 2L,B =
2, C = L

n , ρ = 1
n and D ≡ 0. These allow us to state the next corollaries obtained by

applying respectively Theorem 4.4 and 4.5 on Algorithm 4.5.

Corollary 4.17: Suppose that Assumptions (A.ii) are verified. Suppose also that the
sequence (xk)k∈N is generated by Algorithm 4.5. Let M such that M ≥ 2n and γ > 0
such that γ < 1

L(2+M/n) . Then, for all k ∈ N,

E[F (x̄k)− F∗] ≤
dist(x0, argminF)2 + γ2ME[σ20]

2γk [1− γL(2 +M/n)]
,

with x̄k = 1
k

∑k−1
t=0 xt.

Corollary 4.18: Suppose that Assumptions 4.1 hold. Suppose now that the sequence
(xk)k∈N is generated by Algorithm 4.5. Let M such that M > 2n and γ > 0 such that
γ < 1

L(2+M/n) . Set q := max
{
1− γµ (1− γL(2 +M/n)) , 1 + 2

M − 1
n

}
. Then q ∈]0, 1[

and for all k ∈ N,

E[dist(xk, argminF)]2 ≤ qk
(
dist(x0, argminF)2 + γ2ME[σ20]

)
,

E[F (xk)− F∗] ≤
qkL

2

(
dist(x0, argminF)2 + γ2ME[σ20]

)
.

4.5 Experiments

In this section we perform some experiments on synthetic data to compare the schemes
presented and analyzed in Section 4.4. We compare the reduced variance algorithms SAPA
(Algorithm 4.5) and SVRP (Algorithm 4.3) to their vanilla counterpart SPPA (Algorithm
4.2), as also to their explicit gradient counterparts: SAGA [31] and SVRG [54]. The plots
presented in the section are averaged of 10 or 5 runs, depending on the computational
demand of the problem. The deviation from the average is also plotted. All the codes are

4.5. EXPERIMENTS 75

available on GitHub1.

4.5.1 Comparing SAPA and SVRP to SPPA

The cost of each iteration of SVRP is different to that of SPPA. More precisely, SVRP consists
of two nested iterations, where each outer iteration requires a full explicit gradient and
m stochastic gradient computations. We will consider the minimization of the sum of n
functions, therefore, we run SPPA for N iterations, with N = S(m + n + 1), where S is
the maximum number of outer iterations and m is that of inner iterations as defined in
Algorithm 4.3. Let s be the outer iterations counter. As for m, it is set at 2n like in [54].
Then the stepsize α in SVRP is fixed at 1/(5L). For SAPA, we run it for N − n iterations
because there is a full gradient computation at the beginning of the algorithm. The SAPA
stepsize is set to 1/(5L). Finally, the SPPA stepsize is is chosen to be αk = 1/(k0.55).

For all three algorithms, we normalize the abscissa so to present the convergence with
respect to the outer iterates (x̃s)s∈N as in Theorem 4.11.

The algorithms are run for n ∈ {1000, 5000, 10000}, d fixed at 500 and cond(A⊤A), the
condition number of A⊤A, at 100.

Logistic regression

First, we consider experiments on the logistic loss:

F (x) =
1

n

n∑
i=1

log(1 + exp{−bi⟨ai, x⟩}), (4.5.1)

where ai is the ith row of a matrix A ∈ Rn×d and bi ∈ {−1, 1} for all i ∈ [n]. If we set
fi(x) = log(1 + exp{−bi⟨ai, x⟩}) for all i ∈ [n], then F (x) =

∑n
i=1

1
nfi(x). The matrix A

is generated randomly. We first generate a matrix M according to the standard normal
distribution. A singular value decomposition gives M = UDV ⊤. We set the smallest
singular value to zero and rescale the rest of the vector of singular values so that the
biggest singular value is equal to a given condition number and the second smallest to
one. We obtain a new diagonal matrix D′. Then A is given by UD′V ⊤. In this problem, we
have L = 0.25 × maxi ∥ai∥22. We compute the proximity operator of the logistic function
fi according to the formula and the subroutine code available in [24] and considering the
rule of calculus of the proximity operator of a function composed with a linear map [8,
Corollary 24.15].

Even though we don’t have any theoretical result for SVRP in the convex case, we
perform some experiments in this case as well. As it can readily be seen in Figure 4.1,
both SAPA and SVRP are better than SPPA.

Ordinary least squares (OLS)

To analyze the practical behavior of the proposed methods when the PL condition holds,
we test all the algorithms on an ordinary least squares (OLS) problem:

minimize
x∈Rd

F (x) =
1

2n
∥Ax− b∥2 = 1

n

n∑
i=1

1

2
(⟨ai, x⟩ − bi)

2 , (4.5.2)

where ai is the ith row of the matrix A ∈ Rn×d and bi ∈ R for all i ∈ [n]. In this setting,
we have F (x) =

∑n
i=1

1
nfi(x) with fi(x) = 1

2 (⟨ai, x⟩ − bi)
2 for all i ∈ [n].

1https://github.com/cheiktraore/Variance-reduction-for-SPPA

76 CHAPTER 4

Here, the matrix A was generated as in Section 4.5.1. The proximity operator is com-
puted with the following closed form solution:

proxαfi(x) = x+ α
bi − ⟨ai,x⟩
α∥ai∥2 + 1

ai.

Like in the logistic case, SVRP and SAPA exhibit faster convergence compared to SPPA.
See Figure 4.2.

Figure 4.1: Evolution of F (x̃s) − F∗, with respect to the normalized iterations counter,
for different values of number of functions n.We compare the performance of SAPA (blue)
and SVRP (green) to SPPA (orange) in the logistic regression case.

Figure 4.2: Evolution of F (x̃s)−F∗, with respect to the normalized iterations counter, for
different values of number of functions n. We compare the performance of SAPA (blue)
and SVRP (green) to SPPA (orange) in the ordinary least squares case.

4.5.2 Comparing SAPA to SAGA
In the next experiments, we implement SAPA and SAGA to solve the least-squares problem
(4.5.2) and logistic problem (4.5.1). The data are exactly as in Section 4.5.1 and the
matrix A is generated as explained in Section 4.5.1.

The aim of these experiments is twofold: on the one hand we aim to establish the prac-
tical performance of the proposed method in terms of convergence rate and to compare
it with the corresponding variance reduction gradient algorithm, on the other hand we
want to assess the stability of SAPA with respect to the stepsize selection. Indeed, SPPA
has been shown to be more robust and stable with respect to the choice of the stepsize
than the stochastic gradient algorithms, see [5, 58, 89]. In Figure 4.3 for OLS and Fig-
ure 4.4 for logistic, we plot the number of iterations that are needed for SAPA and SAGA
to achieve an accuracy at least F (xt) − F∗ ≤ ε = 0.01, along a fixed range of stepsizes.
The algorithms are run for n ∈ {1000, 5000, 10000}, d fixed at 500 and cond(A⊤A) at 100.

Our experimental results show that if the stepsize is small enough, SAPA and SAGA
behave very similarly for both problems, see Figure 4.3 and Figure 4.4. This behavior is
in agreement with the theoretical results that establish convergence rates for SAPA that
are similar to those of SAGA. By increasing the step sizes, we observe that SAPA is more
stable than SAGA: the range of stepsizes for which SAPA converges is wider that the one
for SAGA.

4.5. EXPERIMENTS 77

Figure 4.3: Number of iterations needed in order to achieve an accuracy of at least 0.01
for different stepsizes when solving an OLS problem. A cap is put at 40000 iterations.
Here we compare SAPA (in blue) with SAGA (in orange) for different value of the number
of functions n.

Figure 4.4: Number of iterations needed in order to achieve an accuracy of at least 0.01
for different stepsizes when solving a logistic problem. A cap is put at 2.5× 107 iterations.
Here we compare SAPA (in blue) with SAGA (in orange) for different value of the number
of functions n.

4.5.3 Comparing SVRP to SVRG
In this section, we compare the performance of Algorithm 4.3 (SVRP) with SVRG [54] for
the least-squares problem (4.5.2), in terms of number of inner iterations (oracle calls) to
achieve an accuracy at least F (xt)−F∗ ≤ ε = 0.01, along a fixed range of stepsizes. In this
experiment, the condition number is set cond(A⊤A) = 100, n = 2000 and the dimension
of the objective variable d varies in {1000, 1500, 2000, 3000}. The number of outer and
inner iterations is set to s = 40 and m = 1000 respectively and the maximum number of
iterations (oracle calls) is set to N = s(m+ n+ 1).

Two main observations can be made. First we note that when the step-size is opti-
mally tuned, SVRP performs always better than SVRG (overall, it requires less iterations
to achieve an ε = 0.01 accuracy). Secondly, regarding the stability of the two methods with
respect to the choice of the stepsize, while SVRG seems to be a bit more stable for easy
problems (d = 1000), the situation is reversed for harder problems (e.g. d ∈ {2000, 3000}),
where SVRP is more robust. The results are reported in Figure 4.5.

78 CHAPTER 4

Figure 4.5: Number of iterations needed in order to achieve an accuracy of at least 0.01
for different stepsizes when solving an OLS problem. Here we compare SVRP (in blue)
with SVRG (in orange) for four different values of the dimension d in problem (4.5.2),
starting from d = 1000 (easy case) to d = 3000 (hard case).

Appendix for Chapter 4

4.6 Additional proofs

In this appendix we provide the proofs of some auxiliary lemmas used in Sections 4.3 and
4.4 in the main core of this chapter.

4.6.1 Proofs of Section 3

Proof of Proposition 4.3. Notice that from (4.2.1), xk+1 can be identified as

xk+1 = argmin
x∈H

{fik(x)− ⟨ek, x− xk⟩︸ ︷︷ ︸
:=Rik

(x)

+
1

2γ
∥x− xk∥2}.

Let x ∈ H. The function Rik(x) = fik(x) − ⟨ek, x − xk⟩ is convex and continuously
differentiable with ∇Rik(x) = ∇fik(x)− ek

By convexity of Rik , we have:

⟨∇Rik(x
k+1), x− xk+1⟩ ≤ Rik(x)−Rik(x

k+1)

= fik(x)− fik(x
k+1)− ⟨ek, x− xk⟩+ ⟨ek,xk+1 − xk⟩.

(4.6.1)

Since ∇Rik(xk+1) = xk−xk+1

γ , from (4.6.1), it follows:

1

γ
⟨xk − xk+1, x− xk+1⟩ ≤ fik(x)− fik(x

k+1)− ⟨ek, x− xk⟩+ ⟨ek,xk+1 − xk⟩.

By using the identity ⟨xk−xk+1, x−xk+1⟩ = 1
2∥x

k+1−xk∥2+ 1
2∥x

k+1− x∥2− 1
2∥x

k− x∥2
in the previous inequality, we find

−⟨ek,xk+1 − xk⟩+fik(x
k+1)− fik(x) +

1

2γ
∥xk+1 − xk∥2

≤ 1

2γ
∥xk − x∥2 − 1

2γ
∥xk+1 − x∥2 − ⟨ek, x− xk⟩. (4.6.2)

79

80 CHAPTER 4

Recalling the definition of vk in (4.2.2), we can lower bound the left hand term as follows:

−⟨ek,xk+1 − xk⟩+ fik(x
k+1)− fik(x) +

1

2γ
∥xk+1 − xk∥2

= −⟨ek,xk+1 − xk⟩+ fik(x
k+1)− fik(x

k) +
1

2γ
∥xk+1 − xk∥2

+ fik(x
k)− fik(x)

≥ −⟨ek,xk+1 − xk⟩+ ⟨∇fik(x
k),xk+1 − xk⟩+ 1

2γ
∥xk+1 − xk∥2

+ fik(x
k)− fik(x)

= ⟨−ek +∇fik(x
k),xk+1 − xk⟩+ 1

2γ
∥xk+1 − xk∥2

+ fik(x
k)− fik(x)

= ⟨vk,xk+1 − xk⟩+ 1

2γ
∥xk+1 − xk∥2

+ fik(x
k)− fik(x), (4.6.3)

where in the first inequality, we used the convexity of fi, for all i ∈ [n]. Since

⟨vk,xk+1 − xk⟩+ 1

2γ
∥xk+1 − xk∥2 =

∥∥∥∥√γ√
2
vk +

1√
2γ

(xk+1 − xk)

∥∥∥∥2 − γ

2
∥vk∥2.

From (4.6.3), it follows

−⟨ek,xk+1 − xk⟩+fik(x
k+1)− fik(x) +

1

2γ
∥xk+1 − xk∥2

≥
∥∥∥∥√γ√

2
vk +

1√
2γ

(xk+1 − xk)

∥∥∥∥2 − γ

2
∥vk∥2 + fik(x

k)− fik(x)

=
γ

2

∥∥∥∇fik(xk)−∇fik(x
k+1)

∥∥∥2 − γ

2
∥vk∥2 + fik(x

k)− fik(x).

(4.6.4)

By using (4.6.4) in (4.6.2), we obtain

−γ
2
∥vk∥2 + fik(x

k)− fik(x) ≤
1

2γ
∥xk − x∥2 − 1

2γ
∥xk+1 − x∥2 − ⟨ek, x− xk⟩.

(4.6.5)

Now, define Ek[·] = E[· |Fk], where Fk is defined in Assumptions 4.2 and is such that xk

is Fk-measurable and ik is independent of Fk. Thus, taking the conditional expectation of
inequality 4.6.5 and rearranging the terms, we have

Ek[∥xk+1 − x∥2] ≤ ∥xk − x∥2 − 2γEk
[
fik(x

k)− fik(x)
]
+ γ2Ek∥vk∥2

= ∥xk − x∥2 − 2γ(F (xk)− F (x)) + γ2Ek∥vk∥2.

Replacing x by yk, with yk ∈ argminF such that ∥xk−yk∥ = dist(xk, argminF) and using
Assumption (B.ii), we get

Ek∥xk+1 − yk∥2 ≤ ∥xk − yk∥2

− 2γ(F (xk)− F∗) + γ2
(
2A(F (xk)− F∗) +Bσ2k +D

)
= ∥xk − yk∥2 + γ2D

− 2γ(1− γA)(F (xk)− F∗) + γ2Bσ2k (4.6.6)

4.6. ADDITIONAL PROOFS 81

By taking the total expectation in (4.6.6) and using (B.iii), for all M > 0 we have

E∥xk+1 − yk∥2 + γ2ME[σ2k+1] ≤ E∥xk − yk∥2 + γ2E[D]

− 2γ(1− γA)E[F (xk)− F∗] + γ2BE[σ2k]

+ γ2M(1− ρ)E[σ2k] + 2γ2MCE[F (xk)− F∗]

= E∥xk − yk∥2 + γ2E[D]

− 2γ [1− γ(A+MC)]E[F (xk)− F∗]

+ γ2 [M +B − ρM]E[σ2k]

= E[dist(xk, argminF)2] + γ2E[D]

− 2γ [1− γ(A+MC)]E[F (xk)− F∗]

+ γ2 [M +B − ρM]E[σ2k].

Since E[dist(xk+1, argminF)2] ≤ E∥xk+1 − yk∥2, the statement follows.

4.6.2 Proofs of Section 4

Proof of Lemma 4.9. Given any i ∈ [n], since fi is convex and L-Lipschitz smooth, it is a
standard fact (see [78, Equation 2.1.7]) that

(∀ x, y ∈ H)
∥∥∇fi(x)−∇fi(y)

∥∥2 ≤ 2L
[
fi(x)− fi(y)− ⟨∇fi(y), x− y⟩

]
.

By summing the above inequality over i = 1, . . . , n, we have
n∑
i=1

1

n

∥∥∇fi(x)−∇fi(y)
∥∥2 ≤ 2L

[
F (x)− F (y)

]
− 2L⟨∇F (y), x− y⟩

and hence if we suppose that ∇F (y) = 0, then we obtain
n∑
i=1

1

n

∥∥∇fi(x)−∇fi(y)
∥∥2 ≤ 2L

[
F (x)− F (y)

]
. (4.6.7)

Now, let s ∈ N and k ∈ {0, . . . ,m−1} and set, for the sake of brevity, jk = ism+k. Defining
Fk = Fs,k = σ(ξ0, . . . , ξs−1, i0, . . . , ism+k−1) and Ek[·] = E[· |Fk], and recalling that

vk = ∇fjk(x
k)−∇fjk(x̃

s) +∇F (x̃s) and ỹs = PargminF (x̃
s),

we obtain

Ek
[
∥vk∥2

]
≤ 2Ek

∥∥∇fjk(xk)−∇fjk(ỹ
s)
∥∥2 + 2Ek

∥∥[∇fjk(x̃s)−∇fjk(ỹ
s)]−∇F (x̃s)

∥∥2
= 2Ek

∥∥[∇fjk(x̃s)−∇fjk(ỹ
s)
]
− Ek[∇fjk(x̃

s)−∇fjk(ỹ
s)]
∥∥2

+ 2Ek
∥∥∇fjk(xk)−∇fjk(ỹ

s)
∥∥2

= 2Ek
∥∥∇fjk(x̃s)−∇fjk(ỹ

s)
∥∥2 − 2

∥∥Ek[∇fjk(x̃s)−∇fjk(ỹ
s)]
∥∥2

+ 2Ek
∥∥∇fjk(xk)−∇fjk(ỹ

s)
∥∥2

= 2Ek
∥∥∇fjk(xk)−∇fjk(ỹ

s)
∥∥2 + 2Ek

∥∥∇fjk(x̃s)−∇fjk(ỹ
s)
∥∥2

− 2∥∇F (x̃s)∥2

≤ 4L
(
F (xk)− F (ỹs)

)
+ 2σ2k − 2∥∇F (x̃s)∥2,

82 CHAPTER 4

where in the last inequality, we used (4.6.7) with y = ỹs.

Proof of Lemma 4.13 The proof of equation (4.4.11) is equal to that of (4.4.5) in Lemma
4.9 using uk instead of x̃s and Ek[·] = E[· |Fk] with Fk = σ(i0, . . . , ik−1, ε

0, . . . , εk−1),
which ensures that xk and uk are Fk-measurables, and ik and εk are independent of Fk.
Concerning (4.4.12), we note that

σ2k+1 =
1

n

n∑
i=1

∥∥∇fi((1− εk)uk + εkxk)−∇fi(PargminF ((1− εk)uk + εkxk))
∥∥2.

Therefore, we have

Ek
[
σ2k+1

]
= (1− p)σ2k + p

1

n

n∑
i=1

∥∥∇fi(xk)−∇fi(PargminF (x
k))
∥∥2

≤ (1− p)σ2k + 2pL(F (xk)− F ∗),

where in the last inequality we used (4.6.7) with y = PargminF (x
k).

Proof of Lemma 4.16 We recall that, by definition,

(∀ i ∈ [n]) ϕk+1
i = ϕki + δi,ik(x

k − ϕki).

Now, set Ek[·] = E[·|Fk] with Fk = σ(i0, . . . , ik−1), so that ϕki and xk are Fk-measurable
and ik is independent of Fk. By definition of vk, and using the fact that ∇F (x∗) = 0 and
inequality (4.6.7), we have

Ek
[
∥vk∥2

]
= Ek

[∥∥∥∇fik(xk)−∇fik(ϕ
k
ik
) +

1

n

n∑
i=1

∇fi(ϕki)−∇F (x∗)
∥∥∥2]

= Ek

[∥∥∥∇fik(xk)−∇fik(x∗) +∇fik(x∗)−∇fik(ϕ
k
ik
)

+
1

n

n∑
i=1

∇fi(ϕki)−∇F (x∗)
∥∥∥2]

≤ 2Ek

[∥∥∇fik(xk)−∇fik(x∗)
∥∥2]

+ 2Ek

[∥∥∇fik(x∗)−∇fik(ϕ
k
ik
)− Ek[∇fik(x∗)−∇fik(ϕ

k
ik
)]
∥∥2]

=
2

n

n∑
i=1

∥∥∇fi(xk)−∇fi(x∗)
∥∥2 + 2Ek

[∥∥∇fik(x∗)−∇fik(ϕ
k
ik
)
∥∥2]

− 2

∥∥∥∥ 1n
n∑
i=1

∇fi(ϕki)
∥∥∥∥2

≤ 4L
(
F (xk)− F∗

)
+ 2

1

n

n∑
i=1

∥∥∇fi(ϕki)−∇fi(x∗)
∥∥2

︸ ︷︷ ︸
σ2
k

−2

∥∥∥∥ 1n
n∑
i=1

∇fi(ϕki)
∥∥∥∥2.

4.6. ADDITIONAL PROOFS 83

For the second part (4.4.14), we proceed as follows

Ek
[
σ2k+1

]
=

1

n

n∑
i=1

Ek

[∥∥∇fi(ϕk+1
i)−∇fi(x∗)

∥∥2]
=

1

n

n∑
i=1

Ek

[∥∥∇fi(ϕki + δi,ik(x
k − ϕki))−∇fi(x∗)

∥∥2]
=

1

n

n∑
i=1

(
1

n

n∑
j=1

∥∥∇fi(ϕki + δi,j(x
k − ϕki))−∇fi(x∗)

∥∥2)

=
1

n

n∑
i=1

(
n− 1

n

∥∥∇fi(ϕki)−∇fi(x∗)
∥∥2 + 1

n

∥∥∇fi(xk)−∇fi(x∗)
∥∥2)

=

(
1− 1

n

)
1

n

n∑
i=1

∥∥∇fi(ϕki)−∇fi(x∗)
∥∥2 + 2L

n2

n∑
i=1

∥∥∇fi(xk)−∇fi(x∗)
∥∥2

≤
(
1− 1

n

)
σ2k +

2L

n

(
F (xk)− F∗

)
,

where in the last inequality we used inequality (4.6.7) with y = x∗.

CHAPTER 5

Conclusion and perspectives

The overall goal of our thesis was to tackle some problems of large-scale convex optimiza-
tion for data science. Over the course of our PhD, we have been focusing on parallelization
and stochastic algorithms. Our contribution to these two concepts has been developed in
two parts of this document: Chapter 3 for parallelization and Chapter 4 for stochastic
algorithms.

5.1 Asynchronous algorithms

In Chapter 3, we presented an asynchronous version of random block-coordinate descent.
The algorithm allows for a coordinate-wise stepsize so that it can move along each coor-
dinate according to the Lipschitz constant of the partial derivative of that coordinate. In
contrast to the fixed stepsize, where the process moves with respect to the biggest Lips-
chitz constant, hence the slowest stepsize, a variable stepsize with respect to the blocks
makes it possible to move faster along coordinates with a small Lipschitz constant. We also
consider a general probability of selection of the coordinates. Thus, the algorithm covers
any sort of sampling probability as long as each coordinate has a nonzero probability of
being selected at each iteration, i.e., any sampling with replacement.

Remark 5.1: When trying to find the best probability distribution for our results, it
turns out the best one is the uniform distribution because one should have pmin as

big as possible. This is different from the importance sampling pi =
Li∑m
j=1 Lj

for

all i ∈ [m], which was said in [51] to be optimal for coordinate descent without
a proximal step. We believe that another analysis to get our results in Chapter 3
in terms of pi instead of pmin and pmax would yield a different optimal probability
distribution.

We proved convergence of the iterates and convergence rates of the function value in
different settings. One of the key takeaways of our analysis is that it confirms that the
dependence of the stepsize and the convergence on the delay is at most linear.

We piggyback on that last point to say that an interesting research direction is to see
if this dependence can be improved and how exactly the delay affect the rate. To that
end, we use Performance Estimation Problem (PEP) python toolkit, PEPit [46], to test the
worst case convergence of the following delayed gradient algorithm with a delay τ ∈ N at
each iteration:

xk+1 = xk − hk∇F (x0) for 0 ≤ k ≤ τ,

85

86 CHAPTER 5

and

xk+1 = xk − hk∇F (xk−τ) for k > τ. (DGD)

The initial experiments suggest that the delayed gradient descent above and the normal
GD have the same worst case convergence rate for sufficiently small stepsize; see Figure
5.3. This is not the case for bigger stepsize, even for the standard stepsize of 1/L; see
Figures 5.1 and 5.2 So we make the following conjecture.

Conjecture 5.2 (C. Traoré, F. Glineur and S. Villa). Let F : Rd → R be convex and L-
smooth. Suppose that (xk)k∈N is generated by DGD and ∥x0 − x∗∥ ≤ R. If hk = h

L ≤ 1
L(2τ+1) ,

we have, for k ∈ N,

F (xk)− F ∗ ≤ LR2

2

1

2hk + 1
.

Remark 5.3:

(i) If the Conjecture 5.2 is proven true with the stepsize depending linearly on τ ,
it will validate the dependence on τ of our results in Chapter 3.

(ii) If we considered the one coordinate case of Algorithm 3.1, which corresponds
to DGD, Theorem 3.11 gives, with γ = hk =

h
L = 1

L(2τ+1) , the following rate:

F (xk)− F ∗ ≤ 1

k

(
LR2

2h
+ 2τ(F (x0)− F ∗)

)
,

The constants are not as tight as those of Conjecture 5.2, which are known as
the best that a gradient method can achieve.

If we extrapolate this conjecture to our Algorithm 3.1, it means, with better arguments,
that we might be able to get, at least, the same worst case convergence rates as [91], the
synchronous version.

Another research direction is to extend our results to other algorithms such accelerated
versions of our algorithm or primal-dual algorithms [19, 112]. Finally, a more realistic and
challenging extension of our work is to remove the assumption of independence between
the delay vector and the coordinate. This is a common assumption that is made in the
literature. But, it does not cover scenarios where the computation costs of the partial
derivatives are different, for example when the data is sparse. So, in those scenarios the
delay should dependent on the coordinate.

5.2 Variance reduction techniques

In Chapter 4, we proposed a general scheme of variance reduction, based on the stochastic
proximal point algorithm (SPPA), along with its convergence results. Then, we derived,
from that generic algorithm, variants of SPPA coupled with various variance reduction
strategies, namely SVRP, SAPA and L-SVRP, for which we provide improved convergence
results compared to the vanilla version. As the experiments suggest, the convergence
behavior of these stochastic proximal variance reduced methods is most of the time more
stable with respect to the step-size (empirically we can take bigger stepsizes, especially
for higher dimensional problems), making them advantageous over their explicit-gradient
counterparts.

5.2. VARIANCE REDUCTION TECHNIQUES 87

Figure 5.1: Comparison of the worst case convergence rate between GD and DGD for
different value of delay τ ∈ {1, 2, 3, 4} using the standard GD stepsize of 1/L, which is
independent of the delay. We can see that DGD diverges.

Since in this work, differentiability of the summands is required, an interesting line of
future research includes the extension of these results to the nonsmooth case. It could also
be intersesting to consider the model-based framework, as well as inertial (accelerated)
variants, hopefully leading to faster rates. Finally, variance reduction can also be useful
in the stochastic zeroth order settings. We are currently working in its application to
stochastic version of zeroth order descent with structured directions [86]. The problem
we are trying to solve is again the finite sum of functions, but now in Rd:

minimize
x∈Rd

F (x) =
1

n

n∑
i=1

fi(x).

In this setting, we only have access to the functions value. So, we use finite difference
approximations of the different gradients. We call by O(d) the space of orthogonal matrix
of dimension d× d. Let h > 0 and G ∈ O(d). ∀ i ∈ [n], we approximate ∇fi by

(∀x ∈ Rd) gi(x, h,G) :=
d

ℓ

ℓ∑
j=1

fi(x+ hGej)− fi(x)

h
Gej , (5.2.1)

where ℓ ≤ d and (e1, e2, · · · , ed) is the canonical basis of Rd.

Remark 5.4: Estimating the gradient as in (5.2.1) is useful because it can be proved
that in expectation this estimated gradient is the actual gradient of a smooth function
fhi for every h > 0 and i ∈ [n]; see [86, Lemma 1]. This property is particularly handy
in the theoretical analysis.

We also set

(∀x ∈ Rd) g(x, h,G) :=
n∑
i=1

gi(x, h,G)

88 CHAPTER 5

Figure 5.2: Comparison of the worst case convergence rate between GD and DGD for
different value of delay τ ∈ {1, 2, 3, 4} using a stepsize of h

L = 5/2
L(2τ+1) . Even if DGD

converges, it still does not have the same rate as GD across the board.

The zeroth order SVRG is the following.

Algorithm 5.1 (Zeroth order SVRG):
Let m ∈ N, with m ≥ 1, and (ξs)s∈N, (it)t∈N be two independent sequences of
i.i.d. random variables uniformly distributed on {0, 1, . . . ,m − 1} and {1, . . . , n} re-
spectively. Let γ > 0 and set the initial point x̃0 ≡ x̃0 ∈ H. Then

for s = 0, 1, . . .

sample Gs for O(d) according to the normalized Haar measure
x0 = x̃s

for k = 0, . . . ,m− 1⌊
sample Gk for O(d) according to the normalized Haar measure
xk+1 = xk − γ

[
gism+k

(xk, h,Gk)− gism+k
(x̃s, h,Gk) + g(x̃s, h,Gs)

]
x̃s+1 =

∑m−1
k=0 δk,ξsx

k,

where δk,h is the Kronecker symbol.

A simple experiment on linear regression shows that the zeroth order SVRG (S-SVRZD)
5.1 performs better than vanilla structured stochastic zeroth order algorithm (S-SZD); see
Figure 5.4. So, this is a natural extension to this thesis.

5.2. VARIANCE REDUCTION TECHNIQUES 89

Figure 5.3: Comparison of the worst case convergence rate between GD and DGD for
different value of delay τ ∈ {1, 2, 3, 4}. It can be observed that the rate are the same for a
small enough stepsize h

L = 1
L(2τ+1) .

Figure 5.4: Comparison of S-SZD (vanilla) and S-SVRZD (variance reduced) in solving a
linear regression problem.

Bibliography

[1] Alekh Agarwal and John C Duchi. “Distributed delayed stochastic optimization”.

In: Advances in neural information processing systems 24 (2011) (Cited on pp. 28,

44).

[2] Alekh Agarwal and John C. Duchi. “Distributed Delayed Stochastic Optimization”.

In: Proceedings of the 24th International Conference on Neural Information Process-
ing Systems. NIPS’11. Granada, Spain: Curran Associates Inc., 2011, pp. 873–881.

ISBN: 9781618395993 (Cited on p. 2).

[3] Zeyuan Allen-Zhu and Yang Yuan. “Improved SVRG for non-strongly-convex or

sum-of-non-convex objectives”. In: International conference on machine learning.

PMLR. 2016, pp. 1080–1089 (Cited on p. 22).

[4] Vassilis Apidopoulos, Nicolò Ginatta, and Silvia Villa. “Convergence rates for

the heavy-ball continuous dynamics for non-convex optimization, under Polyak–

Łojasiewicz condition”. In: Journal of Global Optimization 84.3 (2022), pp. 563–

589 (Cited on p. 64).

[5] Hilal Asi and John C Duchi. “Stochastic (approximate) proximal point methods:

convergence, optimality, and adaptivity”. In: SIAM Journal on Optimization 29.3

(2019), pp. 2257–2290 (Cited on pp. 25, 63, 67, 68, 76).

[6] Haim Avron, Alex Druinsky, and Anshul Gupta. “Revisiting asynchronous linear

solvers: Provable convergence rate through randomization”. In: Journal of the
ACM 62.6 (2015), pp. 1–27 (Cited on p. 28).

[7] Karl Bäckström, Marina Papatriantafilou, and Philippas Tsigas. “Mindthestep-

asyncpsgd: Adaptive asynchronous parallel stochastic gradient descent”. In: 2019
IEEE International Conference on Big Data (Big Data). IEEE. 2019, pp. 16–25 (Cited

on p. 29).

[8] Heinz H Bauschke and Patrick L Combettes. Convex Analysis and Monotone Oper-
ator Theory in Hilbert Spaces. Springer New York, NY, 2017 (Cited on pp. 4, 5,

75).

[9] Amir Beck and Marc Teboulle. “A fast iterative shrinkage-thresholding algorithm

for linear inverse problems”. In: SIAM journal on imaging sciences 2.1 (2009),

pp. 183–202 (Cited on p. 42).

91

92 BIBLIOGRAPHY

[10] Pascal Bégout, Jérôme Bolte, and Mohamed Ali Jendoubi. “On damped second-

order gradient systems”. In: Journal of Differential Equations 259.7 (2015), pp. 3115–

3143 (Cited on p. 64).

[11] Alexandre Belloni, Victor Chernozhukov, and Lie Wang. “Pivotal estimation via

square-root Lasso in nonparametric regression”. In: The Annals of Statistics 42.2

(2014), pp. 757–788. DOI: 10.1214/14-AOS1204. URL: https://doi.org/10.

1214/14-AOS1204 (Cited on p. 42).

[12] Dimitri P Bertsekas. “Incremental proximal methods for large scale convex opti-

mization”. In: Mathematical programming 129.2 (2011), pp. 163–195 (Cited on

pp. 2, 25, 67).

[13] Dimitri P Bertsekas and John N Tsitsiklis. Parallel and distributed computation:
numerical methods. Vol. 23. Prentice hall Englewood Cliffs, NJ, 1989 (Cited on

pp. 17, 28).

[14] Pascal Bianchi. “Ergodic convergence of a stochastic proximal point algorithm”.

In: SIAM Journal on Optimization 26.4 (2016), pp. 2235–2260 (Cited on p. 67).

[15] Jérôme Bolte, Aris Daniilidis, and Adrian Lewis. “The Łojasiewicz inequality for

nonsmooth subanalytic functions with applications to subgradient dynamical sys-

tems”. In: SIAM Journal on Optimization 17.4 (2007), pp. 1205–1223 (Cited on

p. 64).

[16] Jérôme Bolte et al. “From error bounds to the complexity of first-order descent

methods for convex functions”. In: Mathematical Programming 165.2 (2017),

pp. 471–507 (Cited on pp. 29, 37, 64).

[17] Léon Bottou. “Large-scale machine learning with stochastic gradient descent”. In:

Proceedings of COMPSTAT’2010: 19th International Conference on Computational
StatisticsParis France, August 22-27, 2010 Keynote, Invited and Contributed Papers.
Springer. 2010, pp. 177–186 (Cited on p. 19).

[18] Léon Bottou. “On-Line Learning and Stochastic Approximations”. In: On-Line
Learning in Neural Networks. USA: Cambridge University Press, 1999, pp. 9–42.

ISBN: 0521652634 (Cited on p. 19).

[19] Luis Briceño-Arias, Julio Deride, and Cristian Vega. “Random activations in primal-

dual splittings for monotone inclusions with a priori information”. In: Journal of
Optimization Theory and Applications 192.1 (2022), pp. 56–81 (Cited on p. 86).

[20] Loris Cannelli et al. “Asynchronous parallel algorithms for nonconvex optimiza-

tion”. In: Mathematical Programming 184 (2020), pp. 121–154 (Cited on pp. 28,

33, 44, 45, 46, 47, 48).

[21] Daniel Chazan and Willard Miranker. “Chaotic relaxation”. In: Linear algebra and
its applications 2.2 (1969), pp. 199–222 (Cited on p. 28).

https://doi.org/10.1214/14-AOS1204
https://doi.org/10.1214/14-AOS1204
https://doi.org/10.1214/14-AOS1204

BIBLIOGRAPHY 93

[22] Scott Shaobing Chen, David L Donoho, and Michael A Saunders. “Atomic decom-

position by basis pursuit”. In: SIAM review 43.1 (2001), pp. 129–159 (Cited on

p. 42).

[23] Shixiang Chen, Alfredo Garcia, and Shahin Shahrampour. “On Distributed Non-

convex Optimization: Projected Subgradient Method For Weakly Convex Problems

in Networks”. In: IEEE Transactions on Automatic Control (2021), pp. 1–1. ISSN:

2334-3303. DOI: 10.1109/tac.2021.3056535. URL: http://dx.doi.org/10.

1109/TAC.2021.3056535 (Cited on p. 29).

[24] Giovanni Chierchia et al. “The proximity operator repository. User’s guide”. In:

http://proximity-operator. net/download/guide.pdf 6 (2020) (Cited on p. 75).

[25] Patrick L Combettes and Jonathan Eckstein. “Asynchronous block-iterative primal-

dual decomposition methods for monotone inclusions”. In: Mathematical Program-
ming 168.1 (2018), pp. 645–672 (Cited on p. 28).

[26] Patrick L Combettes and Jean-Christophe Pesquet. “Stochastic quasi-Fejér block-

coordinate fixed point iterations with random sweeping”. In: SIAM Journal on
Optimization 25.2 (2015), pp. 1221–1248 (Cited on p. 30).

[27] Patrick L Combettes and Valérie Wajs. “Signal Recovery by Proximal Forward-

Backward Splitting”. In: Multiscale Modeling & Simulation 4.4 (2005), pp. 1168–

1200 (Cited on p. 28).

[28] Patrick L Combettes and Valérie R Wajs. “Signal recovery by proximal forward-

backward splitting”. In: Multiscale Modeling & Simulation 4.4 (2005), pp. 1168–

1200 (Cited on p. 42).

[29] Damek Davis. “The asynchronous palm algorithm for nonsmooth nonconvex prob-

lems”. In: arXiv preprint arXiv:1604.00526 (2016) (Cited on pp. 28, 29, 33).

[30] Aaron Defazio. “A simple practical accelerated method for finite sums”. In: Ad-
vances in neural information processing systems 29 (2016) (Cited on pp. 4, 62).

[31] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. “SAGA: A fast incremen-

tal gradient method with support for non-strongly convex composite objectives”.

In: Advances in neural information processing systems 27 (2014), pp. 1646–1654

(Cited on pp. 22, 23, 24, 63, 73, 74).

[32] D.L. Donoho. “Compressed sensing”. In: IEEE Transactions on Information Theory
52.4 (2006), pp. 1289–1306. DOI: 10.1109/TIT.2006.871582 (Cited on p. 42).

[33] Dmitriy Drusvyatskiy and Adrian S Lewis. “Error bounds, quadratic growth, and

linear convergence of proximal methods”. In: Mathematics of Operations Research
43.3 (2018), pp. 919–948 (Cited on pp. 29, 37, 64).

[34] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive Subgradient Methods for

Online Learning and Stochastic Optimization”. In: Journal of Machine Learning

https://doi.org/10.1109/tac.2021.3056535
http://dx.doi.org/10.1109/TAC.2021.3056535
http://dx.doi.org/10.1109/TAC.2021.3056535
https://doi.org/10.1109/TIT.2006.871582

94 BIBLIOGRAPHY

Research 12.61 (2011), pp. 2121–2159. URL: http://jmlr.org/papers/v12/

duchi11a.html (Cited on p. 19).

[35] John C Duchi, Alekh Agarwal, and Martin J Wainwright. “Dual averaging for dis-

tributed optimization: Convergence analysis and network scaling”. In: IEEE Trans-
actions on Automatic control 57.3 (2011), pp. 592–606 (Cited on p. 2).

[36] Rick Durrett. Probability: theory and examples. Vol. 49. Cambridge university press,

2019 (Cited on p. 31).

[37] Cong Fang et al. “Spider: Near-optimal non-convex optimization via stochastic

path-integrated differential estimator”. In: Advances in Neural Information Pro-
cessing Systems 31 (2018), pp. 689–699 (Cited on p. 22).

[38] Michael C Ferris and Olvi L Mangasarian. “Parallel variable distribution”. In: SIAM
Journal on Optimization 4.4 (1994), pp. 815–832 (Cited on p. 2).

[39] Hamid Reza Feyzmahdavian, Arda Aytekin, and Mikael Johansson. “An asyn-

chronous mini-batch algorithm for regularized stochastic optimization”. In: IEEE
Transactions on Automatic Control 61.12 (2016), pp. 3740–3754 (Cited on pp. 28,

29).

[40] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. “Regularization paths for

generalized linear models via coordinate descent”. In: Journal of statistical soft-
ware 33.1 (2010), pp. 1–1 (Cited on p. 42).

[41] Wenjiang J Fu. “Penalized regressions: the bridge versus the lasso”. In: Journal of
computational and graphical statistics 7.3 (1998), pp. 397–416 (Cited on p. 42).

[42] Guillaume Garrigos, Lorenzo Rosasco, and Silvia Villa. “Convergence of the forward-

backward algorithm: beyond the worst-case with the help of geometry”. In: Math-
ematical Programming 198 (2023), pp. 937–996 (Cited on p. 64).

[43] Donald Goldfarb and Shiqian Ma. “Fast multiple-splitting algorithms for convex

optimization”. In: SIAM Journal on Optimization 22.2 (2012), pp. 533–556 (Cited

on p. 2).

[44] Pinghua Gong and Jieping Ye. “Linear convergence of variance-reduced stochas-

tic gradient without strong convexity”. In: arXiv preprint arXiv:1406.1102 (2014)

(Cited on p. 71).

[45] Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. “A unified theory of SGD:

Variance reduction, sampling, quantization and coordinate descent”. In: Interna-
tional Conference on Artificial Intelligence and Statistics. PMLR. 2020, pp. 680–690

(Cited on pp. 3, 22, 63, 65, 67, 72).

[46] Baptiste Goujaud et al. “PEPit: computer-assisted worst-case analyses of first-order

optimization methods in Python”. In: arXiv preprint arXiv:2201.04040 (2022)

(Cited on p. 85).

http://jmlr.org/papers/v12/duchi11a.html
http://jmlr.org/papers/v12/duchi11a.html

BIBLIOGRAPHY 95

[47] Robert M Gower. “Convergence theorems for gradient descent”. In: Lecture notes
for Statistical Optimization (2018) (Cited on pp. 19, 20).

[48] Robert M Gower et al. “Variance-reduced methods for machine learning”. In: Pro-
ceedings of the IEEE 108.11 (2020), pp. 1968–1983 (Cited on p. 24).

[49] Osman Güler. “On the convergence of the proximal point algorithm for convex

minimization”. In: SIAM journal on control and optimization 29.2 (1991), pp. 403–

419 (Cited on p. 14).

[50] Robert Hannah and Wotao Yin. “On unbounded delays in asynchronous parallel

fixed-point algorithms”. In: Journal of Scientific Computing 76.1 (2018), pp. 299–

326 (Cited on p. 28).

[51] Filip Hanzely and Peter Richtarik. “Accelerated Coordinate Descent with Arbitrary

Sampling and Best Rates for Minibatches”. In: Proceedings of the Twenty-Second
International Conference on Artificial Intelligence and Statistics. Ed. by Kamalika

Chaudhuri and Masashi Sugiyama. Vol. 89. Proceedings of Machine Learning Re-

search. PMLR, Apr. 2019, pp. 304–312. URL: https://proceedings.mlr.press/

v89/hanzely19a.html (Cited on p. 85).

[52] Thomas Hofmann et al. “Variance reduced stochastic gradient descent with neigh-

bors”. In: Advances in Neural Information Processing Systems 28 (2015), pp. 2305–

2313 (Cited on p. 72).

[53] D.R. Hunter and K. Lange. “A tutorial on MM algorithms”. In: Amer. Stat. 58.5

(2004), pp. 30–37 (Cited on p. 33).

[54] Rie Johnson and Tong Zhang. “Accelerating stochastic gradient descent using pre-

dictive variance reduction”. In: Advances in neural information processing systems
26 (2013), pp. 315–323 (Cited on pp. 22, 23, 63, 69, 71, 74, 75, 77).

[55] Hamed Karimi, Julie Nutini, and Mark Schmidt. “Linear convergence of gradient

and proximal-gradient methods under the Polyak-Łojasiewicz condition”. In: Ma-
chine Learning and Knowledge Discovery in Databases: European Conference, ECML
PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings, Part I 16.

Springer. 2016, pp. 795–811 (Cited on p. 64).

[56] Ahmed Khaled and Chi Jin. “Faster federated optimization under second-order

similarity”. In: arXiv preprint arXiv:2209.02257 (2022) (Cited on pp. 4, 62).

[57] Ahmed Khaled and Peter Richtárik. “Better theory for SGD in the nonconvex

world”. In: arXiv preprint arXiv:2002.03329 (2020) (Cited on pp. 19, 65).

[58] Junhyung Lyle Kim, Panos Toulis, and Anastasios Kyrillidis. “Convergence and

Stability of the Stochastic Proximal Point Algorithm with Momentum”. In: Learn-
ing for Dynamics and Control Conference. PMLR. 2022, pp. 1034–1047 (Cited on

pp. 25, 63, 76).

https://proceedings.mlr.press/v89/hanzely19a.html
https://proceedings.mlr.press/v89/hanzely19a.html

96 BIBLIOGRAPHY

[59] Seung-Jean Kim et al. “An interior-point method for large-scale ℓ_1-regularized

least squares”. In: IEEE journal of selected topics in signal processing 1.4 (2007),

pp. 606–617 (Cited on p. 42).

[60] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.

In: arXiv preprint arXiv:1412.6980 (2014) (Cited on p. 19).

[61] Dmitry Kovalev, Samuel Horváth, and Peter Richtárik. “Don’t jump through hoops

and remove those loops: SVRG and Katyusha are better without the outer loop”.

In: Algorithmic Learning Theory. PMLR. 2020, pp. 451–467 (Cited on pp. 4, 22,

23, 62, 63, 72).

[62] Rainer Kress. “Ill-conditioned linear systems”. In: Numerical Analysis. Springer,

1998, pp. 77–92 (Cited on p. 43).

[63] Ching-Pei Lee and Stephen Wright. “First-Order Algorithms Converge Faster than

O(1/k) on Convex Problems”. In: Proceedings of the 36th International Confer-
ence on Machine Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov.

Vol. 97. Proceedings of Machine Learning Research. PMLR, June 2019, pp. 3754–

3762 (Cited on p. 33).

[64] Xiangru Lian et al. “A comprehensive linear speedup analysis for asynchronous

stochastic parallel optimization from zeroth-order to first-order”. In: Advances in
Neural Information Processing Systems 29 (2016) (Cited on p. 28).

[65] Xiangru Lian et al. “Asynchronous parallel stochastic gradient for nonconvex opti-

mization”. In: Advances in Neural Information Processing Systems 28 (2015) (Cited

on pp. 29, 45).

[66] Ji Liu and Stephen J Wright. “Asynchronous stochastic coordinate descent: Par-

allelism and convergence properties”. In: SIAM Journal on Optimization 25.1

(2015), pp. 351–376 (Cited on pp. 28, 29, 31, 32, 33, 34, 40, 44, 45, 46, 47,

48, 50).

[67] Ji Liu, Stephen J Wright, and Srikrishna Sridhar. “An asynchronous parallel ran-

domized kaczmarz algorithm”. In: arXiv preprint arXiv:1401.4780 (2014) (Cited

on p. 28).

[68] Ji Liu et al. “An asynchronous parallel stochastic coordinate descent algorithm”.

In: International Conference on Machine Learning. PMLR. 2014, pp. 469–477 (Cited

on pp. 17, 28).

[69] Stanislaw Łojasiewicz. “Une propriété topologique des sous-ensembles analytiques

réels”. In: Les équations aux dérivées partielles 117 (1963), pp. 87–89 (Cited on

p. 64).

[70] Zhaosong Lu and Lin Xiao. “On the complexity analysis of randomized block-

coordinate descent methods”. In: Mathematical Programming 152 (2015), pp. 615–

642 (Cited on p. 16).

BIBLIOGRAPHY 97

[71] Zhi-Quan Luo and Paul Tseng. “Error bounds and convergence analysis of feasi-

ble descent methods: a general approach”. In: Annals of Operations Research 46.1

(1993), pp. 157–178 (Cited on p. 36).

[72] Vien Mai and Mikael Johansson. “Convergence of a stochastic gradient method

with momentum for non-smooth non-convex optimization”. In: International Con-
ference on Machine Learning. PMLR. 2020, pp. 6630–6639 (Cited on p. 29).

[73] Bernard Martinet. “Brève communication. Régularisation d’inéquations variation-

nelles par approximations successives”. In: Revue française d’informatique et de
recherche opérationnelle. Série rouge 4.R3 (1970), pp. 154–158 (Cited on p. 1).

[74] Andre Milzarek, Fabian Schaipp, and Michael Ulbrich. “A semismooth Newton

stochastic proximal point algorithm with variance reduction”. In: arXiv preprint
arXiv:2204.00406 (2022) (Cited on pp. 4, 62).

[75] Eric Moulines and Francis Bach. “Non-asymptotic analysis of stochastic approxi-

mation algorithms for machine learning”. In: Advances in neural information pro-
cessing systems 24 (2011), pp. 451–459 (Cited on pp. 19, 21).

[76] Angelia Nedić, Dimitri P Bertsekas, and Vivek S Borkar. “Distributed asynchronous

incremental subgradient methods”. In: Studies in Computational Mathematics 8.C

(2001), pp. 381–407 (Cited on p. 29).

[77] Yu Nesterov. “Gradient methods for minimizing composite functions”. In: Mathe-
matical Programming 140.1 (2013), pp. 125–161 (Cited on p. 42).

[78] Yurii Nesterov. Introductory lectures on convex optimization: A basic course. Vol. 87.

Springer Science & Business Media, 2003 (Cited on pp. 1, 30, 67, 81).

[79] Yurii Nesterov and Vladimir Spokoiny. “Random gradient-free minimization of

convex functions”. In: Foundations of Computational Mathematics 17 (2017), pp. 527–

566 (Cited on p. 2).

[80] Lam M Nguyen et al. “SARAH: A novel method for machine learning problems us-

ing stochastic recursive gradient”. In: International Conference on Machine Learn-
ing. PMLR. 2017, pp. 2613–2621 (Cited on p. 22).

[81] Thomas Paine et al. “Gpu asynchronous stochastic gradient descent to speed up

neural network training”. In: arXiv preprint arXiv:1312.6186 (2013) (Cited on

p. 28).

[82] Andrei Patrascu and Ion Necoara. “Nonasymptotic convergence of stochastic prox-

imal point methods for constrained convex optimization”. In: The Journal of Ma-
chine Learning Research 18.1 (2017), pp. 7204–7245 (Cited on pp. 25, 67).

[83] Zhimin Peng et al. “Arock: an algorithmic framework for asynchronous parallel co-

ordinate updates”. In: SIAM Journal on Scientific Computing 38.5 (2016), A2851–

A2879 (Cited on p. 28).

98 BIBLIOGRAPHY

[84] Boris T Polyak. “Gradient methods for the minimisation of functionals”. In: USSR
Computational Mathematics and Mathematical Physics 3.4 (1963), pp. 864–878

(Cited on p. 64).

[85] Boris T Polyak. “Some methods of speeding up the convergence of iteration meth-

ods”. In: Ussr computational mathematics and mathematical physics 4.5 (1964),

pp. 1–17 (Cited on p. 64).

[86] Marco Rando et al. “An optimal structured zeroth-order algorithm for non-smooth

optimization”. In: Advances in Neural Information Processing Systems 36 (2024)

(Cited on p. 87).

[87] Benjamin Recht and Stephen J. Wright. Optimization for Modern Data Analysis.
Preprint available at http://eecs.berkeley.edu/~brecht/opt4mlbook. 2019

(Cited on p. 14).

[88] Benjamin Recht et al. “Hogwild!: A lock-free approach to parallelizing stochastic

gradient descent”. In: Advances in neural information processing systems 24 (2011)

(Cited on pp. 17, 28, 44).

[89] Herbert Robbins and Sutton Monro. “A stochastic approximation method”. In: The
annals of mathematical statistics 22.3 (1951), pp. 400–407 (Cited on pp. 2, 19,

76).

[90] Ernest K Ryu and Stephen Boyd. “Stochastic proximal iteration: a non-asymptotic

improvement upon stochastic gradient descent”. In: Author website, early draft
(2014) (Cited on p. 25).

[91] Saverio Salzo and Silvia Villa. “Parallel random block-coordinate forward–backward

algorithm: a unified convergence analysis”. In: Mathematical Programming 193.1

(2022), pp. 225–269 (Cited on pp. 16, 28, 29, 32, 33, 34, 35, 37, 40, 46, 50, 86).

[92] Saverio Salzo and Silvia Villa. “Proximal Gradient Methods for Machine Learn-

ing and Imaging”. In: Harmonic and Applied Analysis: from Radon transforms to
machine learning. Ed. by Filippo De Mari and Ernesto De Vito. Cham: Springer

International Publishing, 2022 (Cited on pp. 5, 14, 15, 28, 33, 42).

[93] Mark Schmidt, Nicolas Le Roux, and Francis Bach. “Minimizing finite sums with

the stochastic average gradient”. In: Mathematical Programming 162.1 (2017),

pp. 83–112 (Cited on p. 22).

[94] Othmane Sebbouh, Robert M Gower, and Aaron Defazio. “Almost sure conver-

gence rates for stochastic gradient descent and stochastic heavy ball”. In: Confer-
ence on Learning Theory. PMLR. 2021, pp. 3935–3971 (Cited on p. 68).

[95] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From
Theory to Algorithms. USA: Cambridge University Press, 2014. ISBN: 1107057132

(Cited on p. 1).

http://eecs.berkeley.edu/~brecht/opt4mlbook

BIBLIOGRAPHY 99

[96] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From
Theory to Algorithms. Cambridge University Press, 2014. DOI: 10.1017/CBO9781107298019

(Cited on p. 43).

[97] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From
theory to algorithms. Cambridge university press, 2014 (Cited on p. 18).

[98] Tao Sun, Robert Hannah, and Wotao Yin. “Asynchronous coordinate descent under

more realistic assumptions”. In: Advances in Neural Information Processing Systems
30 (2017) (Cited on p. 28).

[99] Tingni Sun and Cun-Hui Zhang. “Sparse matrix inversion with scaled lasso”. In:

The Journal of Machine Learning Research 14.1 (2013), pp. 3385–3418 (Cited on

p. 42).

[100] Adrien B Taylor, Julien M Hendrickx, and François Glineur. “Exact worst-case con-

vergence rates of the proximal gradient method for composite convex minimiza-

tion”. In: Journal of Optimization Theory and Applications 178 (2018), pp. 455–

476 (Cited on p. 13).

[101] Adrien B Taylor, Julien M Hendrickx, and François Glineur. “Exact worst-case per-

formance of first-order methods for composite convex optimization”. In: SIAM
Journal on Optimization 27.3 (2017), pp. 1283–1313 (Cited on p. 13).

[102] Adrien B Taylor, Julien M Hendrickx, and François Glineur. “Smooth strongly con-

vex interpolation and exact worst-case performance of first-order methods”. In:

Mathematical Programming 161 (2017), pp. 307–345 (Cited on p. 13).

[103] Marc Teboulle and Yakov Vaisbourd. “An elementary approach to tight worst case

complexity analysis of gradient based methods”. In: Mathematical Programming
201.1 (2023), pp. 63–96 (Cited on p. 13).

[104] Robert Tibshirani. “Regression shrinkage and selection via the lasso”. In: Journal
of the Royal Statistical Society: Series B (Methodological) 58.1 (1996), pp. 267–288

(Cited on p. 42).

[105] Panos Toulis and Edoardo M Airoldi. “Asymptotic and finite-sample properties of

estimators based on stochastic gradients”. In: The Annals of Statistics 45.4 (2017),

pp. 1694–1727 (Cited on p. 25).

[106] Panos Toulis, Thibaut Horel, and Edoardo M Airoldi. “The proximal robbins–

monro method”. In: Journal of the Royal Statistical Society Series B: Statistical
Methodology 83.1 (2021), pp. 188–212 (Cited on p. 25).

[107] Panos Toulis, Dustin Tran, and Edo Airoldi. “Towards stability and optimality in

stochastic gradient descent”. In: Artificial Intelligence and Statistics. PMLR. 2016,

pp. 1290–1298 (Cited on p. 25).

https://doi.org/10.1017/CBO9781107298019

100 BIBLIOGRAPHY

[108] Joel A Tropp. “Just relax: Convex programming methods for identifying sparse sig-

nals in noise”. In: IEEE transactions on information theory 52.3 (2006), pp. 1030–

1051 (Cited on p. 42).

[109] Paul Tseng. “Approximation accuracy, gradient methods, and error bound for

structured convex optimization”. In: Mathematical Programming 125.2 (2010),

pp. 263–295 (Cited on p. 42).

[110] Paul Tseng. “Convergence of a block coordinate descent method for nondiffer-

entiable minimization”. In: Journal of optimization theory and applications 109.3

(2001), pp. 475–494 (Cited on p. 42).

[111] Kiwon Um et al. “Solver-in-the-loop: Learning from differentiable physics to in-

teract with iterative pde-solvers”. In: Advances in Neural Information Processing
Systems 33 (2020), pp. 6111–6122 (Cited on p. 28).

[112] Cristian Vega et al. “Fast iterative regularization by reusing data”. In: Journal of
Inverse and Ill-posed Problems 0 (2023) (Cited on p. 86).

[113] Zhe Wang et al. “Spiderboost and momentum: Faster variance reduction algo-

rithms”. In: Advances in Neural Information Processing Systems 32 (2019), pp. 2406–

2416 (Cited on p. 22).

[114] Jin Zhang and Xide Zhu. “Linear Convergence of Prox-SVRG Method for Separable

Non-smooth Convex Optimization Problems under Bounded Metric Subregular-

ity”. In: Journal of Optimization Theory and Applications 192 (2022), pp. 564–597

(Cited on p. 71).

	Introduction
	General context and motivation
	Thesis outline and contributions
	Preliminaries
	Notations
	Elements of convex analysis

	Algorithmic background
	Forward-backward algorithm and its asynchronous version
	Forward-backward algorithm
	Asynchronous algorithms

	Stochastic algorithms and variance reduction
	Stochastic Gradient Descent (SGD)
	Variance reduction methods for SGD
	Stochastic proximal point algorithm (SPPA)

	Convergence of an Asynchronous Block-Coordinate Forward-Backward Algorithm for Convex Composite Optimization
	Introduction
	Related work
	Contributions

	Preliminaries
	Auxiliary lemmas

	Convergence analysis
	Linear convergence under error bound condition
	Applications
	The Lasso problem
	Linear convergence of dual proximal gradient method

	Experiments
	Speedup test
	Comparison with the synchronous version
	Comparison with other asynchronous algorithms

	Proofs of the auxiliary Lemmas in Section 3.2
	Proofs of Section 3.3

	Variance reduction techniques for stochastic proximal point algorithms
	Introduction
	Algorithm and assumptions
	Algorithm
	Assumptions

	Main results
	Derivation of stochastic proximal point type algorithms
	Stochastic Proximal Point Algorithm
	Stochastic Variance Reduced Proximal point algorithm
	Loopless SVRP
	Stochastic Average Proximal Algorithm

	Experiments
	Comparing SAPA and SVRP to SPPA
	Comparing SAPA to SAGA
	Comparing SVRP to SVRG

	Additional proofs
	Proofs of Section
	Proofs of Section

	Conclusion and perspectives
	Asynchronous algorithms
	Variance reduction techniques

	Bibliography

